

Q U A L I F I C A T I O N S A L L I A N C E Mark scheme January 2004

GCE

Mathematics A

Unit MAS2

Copyright © 2004 AQA and its licensors. All rights reserved.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 and a registered charity number 1073334. Registered address AQA, Devas Street, Manchester M15 6EX. Dr Michael Cresswell Director General

AQA

Key to mark scheme

Μ	mark is for	method
m	mark is dependent on one or more M marks and is for	method
Α	mark is dependent on M or m mark and is for	accuracy
В	mark is independent of M or m marks and is for	method and accuracy
Ε	mark is for	explanation
or ft or F		follow through from previous
		incorrect result
CAO		correct answer only
AWFW		anything which falls within
AWRT		anything which rounds to
AG		answer given
SC		special case
OE		or equivalent
A2,1		2 or 1 (or 0) accuracy marks
-x EE		Deduct <i>x</i> marks for each error
NMS		No method shown
PI		Perhaps implied
c		Candidate

Abbreviations used in marking

MC - x	deducted x marks for miscopy
MR - x	deducted x marks for misread
ISW	ignored subsequent working
BOD	gave benefit of doubt
WR	work replaced by candidate

Application of mark scheme

Correct answer without working	mark as in scheme
Incorrect answer without working	zero marks unless specified otherwise

Award method and accuracy marks as appropriate to an alternative solution using a correct method or partially correct method.

Q	Solution	Marks	Total	Comments
1 (a)	$X \sim$ number of bus journeys up to and including the first time she has to stand			
	$X \sim \text{Geo}(0.09)$	B1		
	$P(X = 10) = (0.91)^{9}(0.09)$ = 0.0385	M1		
		A1	3	AWFW 0.038 to 0.039
(b)	$E(X) = \frac{1}{p} = \frac{1}{0.09} = 11\frac{1}{9} = 11.1$	M1A1	2	
	Total		5	
2 (a)(i)	$X \sim B(500, 0.01)$	B 1	1	
(ii)	$P(X = 1) = 500 \times (0.01) \times (0.99)^{499}$	M1		Binomial with correct p and q used
	= 0.0332	A1	2	AWRT 0.033
(b)	$E(X) = 500 \times 0.01 = 5$	B1√		
	$Var(X) = 5 \times 0.99 = 4.95$	B1√	2	on their B (n, p)
(c)	$X \sim P_0(5)$	B1√		on their B (n, p)
	$P(X > 10) = 1 - P(X \le 10)$			
	=-0.9863	M1		(must use Poisson)
	= 0.0137	A1	3	AWFW 0.013 to 0.014
	Total		8	

	Q	Solution	Marks	Total	Comments
3	(a)	$f(6) = \frac{2}{5} = 0.4$			
		$P(T \ge 6) = \frac{1}{2} \times \frac{3}{2} \times \frac{2}{5}$ $= \frac{3}{2} \text{ or } 0.3$	M1 A1	2	
	(b)	$\int_{3}^{m} \frac{1}{90} t^2 dt = 0.5$	M1 M1		Correct limits $\int f(t) dt = 0.5$
		$\therefore \left(\frac{1}{270}t^3\right)_3^m = 0.5$	m1 A1		$\int \frac{1}{90} t^2 dt$ $= \frac{1}{270} t^3$
		$m^3 - 27 = 135$ $m^3 = 162$	m1		Substitution of correct limits to obtain a cubic
		m = 5.45	A1√	6	CAO
	(c)	$\int_{3}^{6} \frac{1}{90} t^{3} dt + \int_{6}^{7.5} \left(2t - \frac{4}{15}t^{2}\right) dt$	M1 m1		Attempt at: (i) <i>t</i> f(<i>t</i>) (ii) two integrals
		$\left[\frac{t^4}{360}\right]_3^6 + \left[t^2 - \frac{4}{45}t^3\right]_6^{7.5}$	A1A1		(iii) correct integration
		(3.6 - 0.225) + (18.75 - 16.8)			
		3.375 – 1.95 = 5.325	A1	5	$5\frac{13}{40}$ (AWRT 5.33)
		Total		13	U

Q		Solution	Marks	Total	Comments
4	(a)	$H_0: \mu = 7.0$ $H_1: \mu < 7.0$	B1		
		$X \sim$ number failing to turn up per day			
		$\therefore X \sim \mathbf{P}_0(7.0)$	M1A1		AWRT 0.082
		$P(X \le 3) = 0.0818$ (tables)			
		> 0.05 \therefore accept H ₀	m1		
		insufficient evidence at the 5% level of significance to support the manager's claim	E1	5	
	(b)	$H_0: \mu = 98$ $H_1: \mu < 98$	B1		
		$Y \sim P_0(98)$ $\approx N(98,98)$	M1A1√		Correct approximation (on their μ)
		$z = \frac{74.5 - 98}{\sqrt{98}}$	M1 A1		Accept 74±0.5
		<i>z</i> = -2.374	A1		CAO (-2.37)
		$z_{crit}^{1\%} = -2.3263$	B 1		(on their z value)
		reject H_0 at the 1% level	A1√		
		evidence at the 1% level of significance to suggest that there has been a decrease in the number of patients not turning up	E1√	9	
		Total		14	

Q	Solution	Marks	Total	Comments
5	H_0 : School & Examination grades are	B1		
	independent			
	(i.e. no association)			
	v = (2-1)(4-1) = 3	B1		
	$\chi^2_{5\%} = 7.815$	B1√`		on their v
	$O_i \qquad E_i \qquad \frac{(O_i - E_i)^2}{E_i}$			
	52 49.8 0.0972	M1		Any correct method for E_i
	34 27.6 1.4841			
	16 23.4 2.3402			
	18 19.2 0.0750	A1		All correct
	114 116.2 0.0417			
	58 64.4 0.6360			
	62 54.6 1.0029			Attempt at $\sum_{i=1}^{n} (0_i - E_i)^2$
	46 44.6 0.0321	M1		Attempt at $\sum_{i=1}^{n} E_i$
	400 400			
	$X^2 = 5.709$	Al		AWFW 5.70 to 5.71
	\therefore do not reject H _o	M1√		(Accept H ₀)
	insufficient evidence at the 5% level of			
	significance to suggest an association between school and examination grades	A1√	9	follow through on their values of X^2 and χ^2
		Total	9	

Q	Solution	Marks	Total	Comments
6 (a)(i)	$X = W - D_1 \sim N(1, 0.36)$	B1B1	2	
(ii)	$P(X \ge 0) = P\left(Z > \frac{0-1}{0.6}\right)$	M1		on their σ
	= P(Z > -1.67)	A1		CAO
	$=\Phi(1.67)$			
	= 0.953	A1	3	AWFW 0.952 to 0.953 (calculator 0.95221)
(b)(i)	$Y = L - (D_1 + D_2 + D_3)$			Use of $\sum D_i \sim N(24, 0.48)$
	$Y \sim N(3, 1.69)$	B1B1	2	and L ~ N(27, 1.21)
(ii)	P(0 < Y < 1) = P(-2.31 < Z < -1.54)	M1		$z = \frac{0-\mu}{\sigma}$ and $z = \frac{1-\mu}{\sigma}$
				on their μ and σ
	z = -2.31 and $z = -1.54$	A1		CAO
	$= \Phi (2.31) - \Phi (1.54)$ = 0.986856 - 0.93822	A1√		on their z-values
	= 0.0513	Al	4	AWFW (0.051 to 0.052)
	Total		11	
	Total		60	