 OUALIFICATIONS

GCE

Mathematics A

Unit MAS2

Copyright © 2004 AQA and its licensors. All rights reserved.

Key to mark scheme

M	mark is for	method
m	mark is dependent on one or more M marks and is for	method
A	mark is dependent on M or m mark and is for	accuracy
B	mark is independent of M or m marks and is for	method and accuracy
E	mark is for	explanation
\checkmark or ft or F		follow through from previous incorrect result
CAO		correct answer only
AWFW		anything which falls within
AWRT		anything which rounds to
AG		answer given
SC		special case
OE		or equivalent
A2,1		2 or 1 (or 0) accuracy marks
$-\boldsymbol{x} \mathbf{E E}$		Deduct x marks for each error
NMS		No method shown
PI		Perhaps implied
c		Candidate

Abbreviations used in marking

MC $-\boldsymbol{x}$	deducted x marks for miscopy
MR $-\boldsymbol{x}$	deducted x marks for misread
ISW	ignored subsequent working
BOD	gave benefit of doubt
WR	work replaced by candidate

Application of mark scheme

mark as in scheme
Incorrect answer without working zero marks unless specified otherwise

[^0]| Q | Solution | Marks | Total | Comments |
| :---: | :---: | :---: | :---: | :---: |
| 1 (a)
 (b) | $X \sim$ number of bus journeys up to and including the first time she has to stand $X \sim \operatorname{Geo}(0.09)$ $\begin{aligned} \mathrm{P}(X=10) & =(0.91)^{9}(0.09) \\ & =0.0385 \end{aligned}$ $\mathrm{E}(X)=\frac{1}{p}=\frac{1}{0.09}=11 \frac{1}{9}=11.1$ | B1
 M1
 A1
 M1A1 | 3
 2 | AWFW 0.038 to 0.039 |
| | Total | | 5 | |
| $2(\mathrm{a})(\mathrm{i})$
 (ii)
 (b)
 (c) | $X \sim \mathrm{~B}(500,0.01)$ $\begin{aligned} \mathrm{P}(X=1) & =500 \times(0.01) \times(0.99)^{499} \\ & =0.0332 \end{aligned}$ $\mathrm{E}(X)=500 \times 0.01=5$ $\operatorname{Var}(X)=5 \times 0.99=4.95$ $X \sim \mathrm{P}_{0}(5)$ $\begin{aligned} \mathrm{P}(X>10) & =1-\mathrm{P}(X \leq 10) \\ & =-0.9863 \\ & =0.0137 \end{aligned}$ | $\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{M} 1 \\ & \mathrm{~A} 1 \\ & \mathrm{~B} 1 \sqrt{ } \sqrt{2} \\ & \mathrm{~B} 1 \checkmark \\ & \mathrm{~B} 1 \checkmark \\ & \mathrm{M} 1 \\ & \mathrm{~A} 1 \end{aligned}$ | 1
 2
 2
 3 | Binomial with correct p and q used AWRT 0.033
 on their $\mathrm{B}(n, p)$
 on their $\mathrm{B}(n, p)$
 (must use Poisson)
 AWFW 0.013 to 0.014 |
| | Total | | 8 | |

Q	Solution	Marks	Total	Comments
4 (a)	$\mathrm{H}_{0}: \mu=7.0$			
	$\mathrm{H}_{1}: \mu<7.0$	B1		
	$X \sim$ number failing to turn up per day			
	$\therefore X \sim \mathrm{P}_{0}(7.0)$	M1A1		AWRT 0.082
	$\mathrm{P}(X \leq 3)=0.0818 \text { (tables) }$			
	>0.05	m1		
	insufficient evidence at the 5% level of significance to support the manager's claim	E1	5	
(b)	$\mathrm{H}_{0}: \mu=98$			
	$\mathrm{H}_{1}: \mu<98$	B1		
	$Y \sim \mathrm{P}_{0}(98)$			
	$\approx \mathrm{N}(98,98)$	M1A1 \checkmark		Correct approximation (on their μ)
	74.5-98	M1		Accept 74 ± 0.5
	$z=\frac{\sqrt{98}}{}$	A1		
	$z=-2.374$	A1		CAO (-2.37)
	$z_{\text {crit }}^{1 \%}=-2.3263$	B1		(on their z value)
	reject H_{0} at the 1% level	A1 \checkmark		
	evidence at the 1% level of significance to suggest that there has been a decrease in the number of patients not turning up	E1ヶ		
			9	
	Total		14	

Q	Solution	Marks	Total	Comments
6 (a)(i)	$X=W-D_{1} \sim N(1,0.36)$	B1B1	2	
(ii)	$\mathrm{P}(X \geq 0)=\mathrm{P}\left(Z>\frac{0-1}{0.6}\right)$	M1		on their σ
	$=\mathrm{P}(Z>-1.67)$	A1		CAO
	$=\Phi(1.67)$			
	$=0.953$	A1	3	AWFW 0.952 to 0.953 (calculator 0.95221)
(b)(i)	$Y=\mathrm{L}-\left(\mathrm{D}_{1}+\mathrm{D}_{2}+\mathrm{D}_{3}\right)$			Use of $\sum \mathrm{D}_{i} \sim \mathrm{~N}(24,0.48)$
	$Y \sim \mathrm{~N}(3,1.69)$	B1B1	2	and $\mathrm{L} \sim \mathrm{N}(27,1.21)$
(ii)	$\mathrm{P}(0<Y<1)=\mathrm{P}(-2.31<Z<-1.54)$	M1		$z=\frac{0-\mu}{\sigma} \text { and } z=\frac{1-\mu}{\sigma}$
				on their μ and σ
	$z=-2.31 \quad$ and $\quad z=-1.54$	A1		CAO
	$=\Phi(2.31)-\Phi(1.54)$	A $1 \checkmark$		on their z-values
	$=0.986856-0.93822$ \}			
	$=0.0513$	A1	4	AWFW (0.051 to 0.052)
	Total		11	
	Total		60	

[^0]: Award method and accuracy marks as appropriate to an alternative solution using a correct method or partially correct method.

