

Q U A L I F I C A T I O N S A L L I A N C E Mark scheme January 2004

GCE

Mathematics A

Unit MAS1

Copyright © 2004 AQA and its licensors. All rights reserved.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 and a registered charity number 1073334. Registered address AQA, Devas Street, Manchester M15 6EX. Dr Michael Cresswell Director General

AQA

Key to mark scheme

Μ	mark is for	method
m	mark is dependent on one or more M marks and is for	method
Α	mark is dependent on M or m mark and is for	accuracy
В	mark is independent of M or m marks and is for	method and accuracy
Ε	mark is for	explanation
or ft or F		follow through from previous
		incorrect result
CAO		correct answer only
AWFW		anything which falls within
AWRT		anything which rounds to
AG		answer given
SC		special case
OE		or equivalent
A2,1		2 or 1 (or 0) accuracy marks
-x EE		Deduct <i>x</i> marks for each error
NMS		No method shown
PI		Perhaps implied
C		Candidate

Abbreviations used in marking

MC - x	deducted x marks for miscopy
MR - x	deducted x marks for misread
ISW	ignored subsequent working
BOD	gave benefit of doubt
WR	work replaced by candidate

Application of mark scheme

Correct answer without working	mark as in scheme
Incorrect answer without working	zero marks unless specified otherwise

Award method and accuracy marks as appropriate to an alternative solution using a correct method or partially correct method.

Q	Solution	Marks	Total	Comments
1 (a)	$P(T < 8) = (8 - 4) \times \left(\frac{0.05 + 0.1}{2}\right)$ or	M1		Trapezium Worthwhile attempt at correct area, however divided
	$\{(8-4)\times0.05\}+\left\{\frac{1}{2}\times(8-4)\times(0.1-0.05)\right\}$			Rectangle + triangle
	= 0.3	A1	2	CAO; OE
(b)(i)	Area under graph = 1	M1		Use of; may be implied by their area;
	Area = (a) +			accept $P(T > 8) = 1 - (a)$ must be stated clearly in reverse method
	$\{(s-8) \times 0.1\} + \{\frac{1}{2} \times (20-s) \times 0.1\}$ or	M1		Worthwhile attempt at area under given graph or area above 8, however divided
	$\left(\frac{(20-8)+(s-8)}{2}\right)\times 0.1$			
	Hence $0.05s = 0.5$	A1	3	CAO; OE
	(implies $s = 10$)			AG NB: In reverse method, assuming s = 10 so triangle area = 0.5 then showing s = 10 given rectangle area = 0.2, scores max of M1 M1 A0
(ii)	$P(T>15) = \frac{1}{2} \times (20 - 15) \times f(15)$	M1		Area of correct triangle or $\int_{15}^{20} y dx$
	However using (b)			
	f(15) = 0.05 Thus $P(T > 15) = 0.125$	B1 A1	3	CAO; OE or $y = 0.2 - 0.01x$ CAO; OE
	Titus r(1 > 13) = 0.125 Total	111	<u> </u>	

Q	Solution	Marks	Total	Comments
2 (a)	p = 0.85			
	n = 5			
	$P(X=4) = \binom{5}{4} (0.85)^4 (0.15)^1 =$	M1		Use of B (5 or 40, 0.85 or 0.15)
	(4)			in (a) or (b); may be implied
	$5 \times 0.52201 \times 0.15 = 0.391$ to 0.392	A1	2	AWFW
				(0.8352 - 0.4437 = 0.3915)
				M0 for normal approximation
(b)	n = 40 Tables			
	$P(X > 30) = P(X \ge 31) = P(X' \le x')$	M1		Change to X'
	$P(X' \le 9) =$	Al		9,10 or 11; 0.970(1) or 0.988
	0.933	A1		AWRT; (0.9328)
	Calculator	(\mathbf{M})		0 10 11 /
	P(X > 30) = P(X = 31, 32,, 40) or	(<i>M1</i>)		9, 10 or 11 terms
	$P(X' \le 9) = P(X' = 9, 8,, 0)$	(<i>A1</i>)		At least one 3-part term correct
	$1(X \le 9) = 1(X = 9, 0,, 0)$			or 0.067
	0.933	(<i>A1</i>)	3	AWRT
	250			M0 for normal approximation
(c)	n = 250 Mean ($\mu = np$) = 212.5 or 37.5	B1		CAO; either
	and $(\mu - np) = 212.5 \text{ or } 57.5$	DI		
	Variance $(\sigma^2 = np(1-p)) = 31.875$	B1		AWFW 31.8 to 31.9
		51		or $\sigma = 5.64$ to 5.65
	$P(X_B < 200) = P(X_N < 199.5) =$	B1		CAO; accept X' and 50.5
	$P\left(Z < \frac{199.5 - 212.5}{\sqrt{21.875}}\right)$	M1		Standardising (199.5, 200, 200.5)
	$P\left(Z < \frac{\sqrt{31.875}}{\sqrt{31.875}}\right)$			or (49.5, 50, 50.5, 51, 51.5) using their
				μ and their σ (not σ^2) consistently
				M0 for B (250, 0.85) = 0.0130
	= P(Z < -2.30) or P(Z > 2.30)			
	$= 1 - \Phi(2.30)$	m1		Attempt at area change
	= 0.010 to 0.011	A1	6	AWFW; 0.01065
	Total		11	

Q	Solu	ıtion	Marks	Total	Comments
3 (a)	Any two valid disting non–random or not re (or equivalent or any	epresentative	B2, 1	2	Omits students not entering SU – (1 or more reasons for this scores B1) Some students more likely to reply Some students will not reply Non random selection by Pina Students arriving in groups
(b)(i)	Number = $\frac{86}{1032} \times 60$) = 5	B1	1	CAO
(ii)	Number students from	m (0)0 to 85	B1		86 consecutive values
	or fro	om (0)1 to 86			
	Obtain 5 (consecution numbers to identify s	B1√		5 and 2-digit $$ on (i)	
	Reject repeated numb	B1	3	Either; OE	
	or				
	Reject numbers outsi	ide range			
(iii)		27 or 52	B1		Either CAO; first value
	52 27 95 ((0)4 (0)6 66	B1	2	Either CAO; other 4 values
	79 33 72	79 96 17			
		Tota	1	8	

Q	Solution	Marks	Total	Comments
4(a)(i)	$X \sim N(\mu_X 3^2)$			
	$P(X < 1010) = P\left(Z < \frac{1010 - 1005}{3}\right) =$	M1		Standardising (1009.5, 1010 or 1010.5) with $(\sqrt{3}, 3 \text{ or } 3^2)$ and/or (1005 – 1010)
	P(Z < 1.67) =	A1		AWRT; ignore sign
	0.951 to 0.953	A1	3	AWFW; (0.95221)
(ii)	P(X < 1000) = 1%			
	$z_{0.01} = -2.3263$	B1		AWFW 2.32 to 2.33; ignore sign
	Also $z = \frac{1000 - \mu_X}{3}$	M1		Standardising 1000 with μ_X and 3 but allow (μ_X – 1000)
	Thus $\frac{1000-\mu_X}{3} = -2.3263$	m1		Equating <i>z</i> -value to <i>z</i> -term; not using 0.01, 0.99 or $ 1-z $
	Thus $\mu_X = 1007$	A1	4	AWRT
(b)	$\overline{y} = \frac{16136}{16} = 1008.5$	B1		САО
	95% implies $z = 1.96$	B1		CAO
	CI for μ is $\overline{y} \pm z \times \frac{\sigma}{\sqrt{n}}$ Thus $1008.5 \pm 1.96 \times \frac{3}{\sqrt{16}}$	M1		Use of; must have \sqrt{n} with $n > 1$ M0 for attempt at using <i>s</i>
	Thus $1008.5 \pm 1.96 \times \frac{3}{\sqrt{16}}$	A1√		$$ on \overline{y} and z only
	Thus (1007, 1010)	Aldep	5	AWRT; dependent upon fully correct expression for CI
	Total		12	

Q	Solution	Marks	Total	Comments
5 (a)	Mean, $\mu = 21 = \frac{a+b}{2}$	B1		CAO; stated or used
	Variance, $\sigma^2 = 27 = \frac{(b-a)^2}{12}$	B1		CAO; stated or used
	so			
	$((42 - a) - a)^2 = 12 \times 27 = 324$			
	or $b - a = (\pm) 18$	M1		Substitution of μ into σ^2
				or $$ of equation involving σ^2
	Thus $(42 - 2a) = (\pm)18$	M1		Solving quadratic or two simultaneous
	or $a + b = 42$ and $b - a = (\pm) 18$			equations
	Thus $a = 30 \text{ or } 12$ and $b = 12 \text{ or } 30$			
	As $a < b$ so $a = 12$ and $b = 30$	A1	5	CAO; must state $a < b$ B1 for (12, 30) $\Rightarrow \mu = 21$
				B1 for (12, 30) $\Rightarrow \sigma^2 = 27$
(b)(i)	P(5 < X < 20) = P(12 < X < 20) =	B1		Lower limit of 12 or 20 to 30
	20 - l $30 - 20$	MI		Attempt at area of a rectangle of
	$\frac{20-l}{b-a}$ or $1-\frac{30-20}{b-a}$	M1		height $\frac{1}{b-a}$ or $\frac{1}{18}$
		A 1	2	Can be scored in (ii)
	= 8/18 or 4/9 or 0.44	A1	3	CAO/AWRT; OE
(ii)	$P\left(X < \mu - \frac{\sigma\sqrt{3}}{2}\right) =$			
	$P\left(X < 21 - \frac{\sqrt{27} \sqrt{3}}{2}\right) =$	M1		Substitution of $\mu = 21$ and $\sigma = \sqrt{27}$; OE
	P(<i>X</i> < 16.5)	A1		CAO
	= 4.5/18 or 1/4 or 0.25	A1	3	CAO; OE
	Total		11	

Q	Solution	Marks	Total	Comments
6 (a)	r : 0 1 2 3 4			
	P(R = r): 0.1 0.2 0.4 0.2 0.1			
(i)	E(R) = 0 + 0.2 + 0.8 + 0.6 + 0.4 = 2	M1	1	AG; use of $\sum r \times p_r$ or symmetrical
				argument
(ii)	$E(R^2) = 0 + 0.2 + 1.6 + 1.8 + 1.6 = 5.2$	B1		CAO; must be some evidence of use of $\sum_{n=1}^{\infty} 2^{n}$
				$\sum r^2 \times p_r$
	$Var(R) = E(R^2) - (E(R))^2 = 1.2$	M1		AG; use of a formula for $Var(R)$
	or			
	= 0.4 + 0.2 + 0 + 0.2 + 0.4 = 1.2	(<i>B1</i>)	2	CAO; \geq 4 terms correct
(b)	$E(P) = 3 \times 2 + 4 = 10$	B1		CAO
	$\operatorname{Var}(P) = 3^2 \times \operatorname{Var}(R)$	M1		Use of $Var(aX + b) = a^2 Var(X)$ with $a > 1$ and $b \ge 0$
	= 10.8	A1	3	CAO
	- 10.8		5	
(c)(i)	C = 200 - R - P	M1		Use of ; may be implied
	= 200 - R - (3R + 4)			
	Hence $C = 196 - 4R$	A1	2	CAO
(ii)	$E(C) = 196 - 4 \times 2 = 188$	B1		CAO
	$\operatorname{Var}(C) = 4^2 \times \operatorname{Var}(R) = 19.2$	B1dep	2	CAO; dependent on A1 in (c)(i)
	Total		10	
	Total		60	