

Q U A L I F I C A T I O N S A L L I A N C E Mark scheme January 2004

GCE

Mathematics A

Unit MAP5

Copyright © 2004 AQA and its licensors. All rights reserved.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 and a registered charity number 1073334. Registered address AQA, Devas Street, Manchester M15 6EX. Dr Michael Cresswell Director General

AQA

Key to mark scheme

Μ	mark is for	method
m	mark is dependent on one or more M marks and is for	method
Α	mark is dependent on M or m mark and is for	accuracy
В	mark is independent of M or m marks and is for	method and accuracy
Ε	mark is for	explanation
or ft or F		follow through from previous
		incorrect result
CAO		correct answer only
AWFW		anything which falls within
AWRT		anything which rounds to
AG		answer given
SC		special case
OE		or equivalent
A2,1		2 or 1 (or 0) accuracy marks
-x EE		Deduct <i>x</i> marks for each error
NMS		No method shown
PI		Perhaps implied
C		Candidate

Abbreviations used in marking

MC - x	deducted x marks for miscopy
MR - x	deducted x marks for misread
ISW	ignored subsequent working
BOD	gave benefit of doubt
WR	work replaced by candidate

Application of mark scheme

Correct answer without working	mark as in scheme
Incorrect answer without working	zero marks unless specified otherwise

Award method and accuracy marks as appropriate to an alternative solution using a correct method or partially correct method.

Q	Solution	Marks	Total	Comments
1	$y(1.2) \approx 2y(1.1) - y(1) + 0.1^2 (1.1^2 + 2.08^2)$	M1A1		
	$= 2 \times 2.08 - 2 + 0.055364$	A1F		
	= 2.22 (2.215364)	A1F	4	AWRT
	Total		4	
2 (a)	$u = 1 - x^2 \qquad du = -2xdx$	M1		
	or $x = \sin \theta$ $dx = \cos \theta d\theta$			
	I = $\int \frac{-du}{2u^{\frac{1}{2}}}$ or I = $\int \sin\theta d\theta$	A1		Limits not needed here
	$=\left[-u^{\frac{1}{2}}\right]$ or $\left[-\cos\theta\right]$	A1F		Limits not needed
	$=1-(1-a^2)^{\frac{1}{2}}$	A1F	4	ft provided $p\left(1-\left(1-a^2\right)^{\frac{1}{2}}\right)$ where p is an integer
(b)	When $a = 1$, denominator is zero	E1	1	
(c)	a = 1, I = 1	M1A1F	2	
	Total		7	

Q	Solution	Marks	Total	Comments
3 (a)	$A = \frac{1}{2} \int_{\theta_1}^{\theta_2} e^{2k\theta} d\theta$	M1A1		A1 for $e^{2k\theta}$
	$=\frac{1}{4k} \left[e^{2k\theta} \right]_{\theta_1}^{\theta_2}$	A1		
	$=\frac{1}{4k}\left[e^{2k\theta_2}-e^{2k\theta_1}\right]$			
	$=\frac{1}{4k}(r_2^2-r_1^2)$	A1	4	AG
(b)(i)	at $K, e^{\theta} = 2$	M1		
	$\theta = \ln 2$			
	<i>K</i> is (2, ln 2)	A1	2	Accept (2, 0.69(3))
(ii)	Area of sector of circle is $\frac{1}{2} \times 2^2 \ln 2$			
	=2ln2	B1		
	Area under curve by (a) is $\frac{1}{4}(2^2 - 1^2)$	M1		
	$=\frac{3}{4}$	A1		
	Shaded area = $2 \ln 2 - \frac{3}{4}$	M1A1F	5	M0 if added or subtracted the wrong way round ft simple slips
	Total		11	

Q	Solution	Marks	Total	Comments
4 (a)(i)	$\cos x = 1 - \frac{x^2}{2} + \frac{x^4}{24}$	B1		Simplification of factorials continued sensibly
	$\frac{1}{\cos x} = \left(1 - \frac{x^2}{2} + \frac{x^4}{24}\right)^{-1}$	M1		
	$=1 + \left(\frac{x^2}{2} - \frac{x^4}{24}\right) + \left(\frac{x^2}{2} - \frac{x^4}{24}\right)^2$	M1		
	$=1+\frac{x^2}{2}$	A1		AG
	$+\frac{5x^4}{24}$	A1	5	AG
(ii)	$\tan x = \left(x - \frac{x^3}{6} + \frac{x^5}{120}\right) \left(1 + \frac{x^2}{2} + \frac{5x^4}{24}\right)$	M1A1		
	$=x+\frac{x^3}{3}$	A1F		Incorrect sin series
	$+\frac{2x^5}{15}$ or $\frac{16x^5}{120}$	A1F	4	
(b)	$\lim\left(\frac{\tan 2x - 2x}{\tan x - x}\right) = \frac{2x + \frac{8x^3}{3} + \frac{64x^5}{15} - 2x}{x + \frac{x^3}{3} + \frac{2x^5}{15} - x}$	M1A1F		
	$=\frac{\frac{8}{3} + O(x^{2})}{\frac{1}{3} + O(x^{2})}$	A1F		
	= 8	A1F	4	
	Total		13	

Q		Solution	Marks	Total	Comments
5 ((a)	$y = ax^2 + bx$			
		$y = ax^{2} + bx$ $\frac{dy}{dx} = 2ax + b$ $\frac{d^{2}y}{dx^{2}} = 2a$	M1A1		
		2a + 2ax + b = x	m1		
		$a = \frac{1}{2}, b = -1$	A1F	4	
(b)	Auxiliary equation $m^2 + m = 0$	M1		
		m = 0 or -1	A1		
		$CF: y = A + Be^{-x}$	A1F		Provided <i>m</i> 's are real
		GS: $y = A + Be^{-x} + \frac{1}{2}x^2 - x$	A1F		
		$\frac{dy}{dx} = -Be^{-x} + x - 1$ $A = 5 B = 4$ (GS $y = 5 - 4e^{-x} + \frac{1}{2}x^2 - x$)	M1		Provided the GS is differentiated
		A = 5 B = 4	A1A1F	7	
		(GS $y = 5 - 4e^{-x} + \frac{1}{2}x^2 - x$)			
		Total		11	

Q	Solution	Marks	Total	Comments
	$k_1 = 0.1 \left(\frac{1^3 + 1^3}{1 \times 1^2} \right) = 0.2$	B1		
	$k_2 = 0.1 \left(\frac{1.1^3 + 1.2^3}{1.1 \times 1.2^2} \right)$	M1A1		
	$y(1.1) = 1 + \frac{1}{2}(0.2 + 0.193118686)$	M1		
	= 1.1965 (59343) = 1.1966 (4dp)	A1F	5	
(b)(i)	$u + x\frac{\mathrm{d}u}{\mathrm{d}x} = \frac{x^3 + u^3 x^3}{u^2 x^3} = \frac{1 + u^3}{u^2}$	M1A1		
	$x\frac{du}{dx} = \frac{1}{u^2} + u - u = \frac{1}{u^2}$	A1	3	AG
(ii)	$\int u^2 du = \int \frac{1}{x} dx$ $\frac{u^3}{3} = \ln x + c$	M1		Separation of variables
	$\frac{u^3}{3} = \ln x + c$	A1		
	$\frac{y^3}{3x^3} = \ln x + c$	ml		
	$c = \frac{1}{3}$	A1		
	$y = x(3\ln x + 1)^{\frac{1}{3}}$	A1	5	Must be y not y^3
(iii)	y(1.1) = 1.1961(85468)			
	=1.1962 (4dp)	B1	1	CAO
	Total		14	
	Total		60	