 OUALIFICATIONS

## GCE

# Mathematics A 

## Unit MAP4

Copyright © 2004 AQA and its licensors. All rights reserved.

## Key to mark scheme

| M | mark is for | method |
| :---: | :---: | :---: |
| m | mark is dependent on one or more M marks and is for | method |
| A | mark is dependent on M or m mark and is for | accuracy |
| B | mark is independent of M or m marks and is for | method and accuracy |
| E | mark is for | explanation |
| $\checkmark$ or ft or F |  | follow through from previous incorrect result |
| CAO |  | correct answer only |
| AWFW |  | anything which falls within |
| AWRT |  | anything which rounds to |
| AG |  | answer given |
| SC |  | special case |
| OE |  | or equivalent |
| A2,1 |  | 2 or 1 (or 0 ) accuracy marks |
| $-\boldsymbol{x} \mathbf{E E}$ |  | Deduct $x$ marks for each error |
| NMS |  | No method shown |
| PI |  | Perhaps implied |
| c |  | Candidate |

## Abbreviations used in marking

| MC $-\boldsymbol{x}$ | deducted $x$ marks for miscopy |
| :--- | ---: |
| MR $-\boldsymbol{x}$ | deducted $x$ marks for misread |
| ISW | ignored subsequent working |
| BOD | gave benefit of doubt |
| WR | work replaced by candidate |

## Application of mark scheme

mark as in scheme
Incorrect answer without working zero marks unless specified otherwise

[^0]


| Q | Solution | Marks | Total | Comments |
| :---: | :---: | :---: | :---: | :---: |
| 5 (a) | $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{-2 x}{1-x^{2}}$ | B1, B1 |  | B1 each numerator and denominator |
|  | $1+\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2}=1+\frac{4 x^{2}}{\left(1-x^{2}\right)^{2}}$ | M1 |  |  |
|  | $=\frac{\left(1-x^{2}\right)^{2}+4 x^{2}}{\left(1-x^{2}\right)^{2}}$ | A1F |  |  |
|  | $=\frac{1-2 x^{2}+x^{4}+4 x^{2}}{\left(1-x^{2}\right)^{2}}$ | A1 |  | CAO |
|  | $=\left(\frac{1+x^{2}}{1-x^{2}}\right)^{2}$ | A1 | 6 |  |
| (b) | $\text { arc length }=\int_{0}^{p}\left(\frac{1+x^{2}}{1-x^{2}}\right) \mathrm{d} x$ | M1 |  |  |
|  | $=\int_{0}^{p}\left(\frac{2}{1-x^{2}}-1\right) \mathrm{d} x$ | A1 |  |  |
|  | $\left[2 \tanh ^{-1} x-x\right]_{0}^{p}$ | A1F |  | ft if hyperbolic |
|  | $=2 \tanh ^{-1} p-p$ | A1 | 4 | AG |
|  | Total |  | 10 |  |


| Q | Solution | Marks | Total | Comments |
| :---: | :---: | :---: | :---: | :---: |
| 6 (a)(i) | $\begin{aligned} & \left(2 \mathrm{e}^{\frac{\pi \mathrm{i}}{4}}\right)^{4}=16 \mathrm{e}^{\pi \mathrm{i}}=-16 \\ & z=2 \mathrm{e}^{\left(\frac{\pi \mathrm{i}}{4}+\frac{2 k \pi i}{4}\right)} \\ & k=0, z=2 \mathrm{e}^{\frac{\pi \mathrm{i}}{4}} \end{aligned}$ | B1 <br> M1 | 1 |  |
|  | other roots, $z=2 \mathrm{e}^{-\pi \mathrm{i} / 4}, z=2 \mathrm{e}^{ \pm 3 \pi \mathrm{i} / 4}$ | A2,1,0 | 3 | Allow if quoted correctly Deduct A1 for answers outside range indicated |
| (iii) | Argand diagram: $r=2$ <br> Properly spaced | $\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$ | 2 | CAO except for $r=2$ |
| (b)(i) | $\begin{aligned} & \left(z-2 \mathrm{e}^{\frac{\pi i}{4}}\right)\left(z-2 \mathrm{e}^{-\frac{\pi i}{4}}\right) \\ & =z^{2}-2\left(\mathrm{e}^{\frac{\pi i}{4}}+\mathrm{e}^{-\frac{\pi i}{4}}\right) z+4 \mathrm{e}^{\frac{\pi i}{4}} \mathrm{e}^{-\frac{\pi i}{4}} \end{aligned}$ | M1 |  |  |
|  | $=z^{2}-2 \times 2 \cos \frac{\pi}{4} z+4$ | A1 |  | Must see some working for this A1 |
|  | $=$ | A1 | 3 | AG |
| (ii) | $\begin{aligned} & \left(z-2 \mathrm{e}^{3 \pi \mathrm{i} / 4}\right)\left(z-2 \mathrm{e}^{-3 \pi \mathrm{i} / 4}\right) \\ = & z^{2}-2 \times 2 \cos \frac{3 \pi}{4} z+4=z^{2}+2 \sqrt{2} z+4 \end{aligned}$ | M1A1 |  |  |
|  | $z^{4}+16=\left(z^{2}-2 \sqrt{2} z+4\right)\left(z^{2}+2 \sqrt{2} z+4\right)$ | A1 | 3 | If quoted allow B1 |
|  | Total |  | 12 |  |
|  | Total |  | 60 |  |


[^0]:    Award method and accuracy marks as appropriate to an alternative solution using a correct method or partially correct method.

