

Q U A L I F I C A T I O N S A L L I A N C E Mark scheme January 2004

GCE

Mathematics A

Unit MAP4

Copyright © 2004 AQA and its licensors. All rights reserved.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 and a registered charity number 1073334. Registered address AQA, Devas Street, Manchester M15 6EX. Dr Michael Cresswell Director General

AQA

Key to mark scheme

Μ	mark is for	method
m	mark is dependent on one or more M marks and is for	method
Α	mark is dependent on M or m mark and is for	accuracy
В	mark is independent of M or m marks and is for	method and accuracy
Ε	mark is for	explanation
or ft or F		follow through from previous
		incorrect result
CAO		correct answer only
AWFW		anything which falls within
AWRT		anything which rounds to
AG		answer given
SC		special case
OE		or equivalent
A2,1		2 or 1 (or 0) accuracy marks
-x EE		Deduct <i>x</i> marks for each error
NMS		No method shown
PI		Perhaps implied
c		Candidate

Abbreviations used in marking

MC - x	deducted x marks for miscopy
MR - x	deducted x marks for misread
ISW	ignored subsequent working
BOD	gave benefit of doubt
WR	work replaced by candidate

Application of mark scheme

Correct answer without working	mark as in scheme
Incorrect answer without working	zero marks unless specified otherwise

Award method and accuracy marks as appropriate to an alternative solution using a correct method or partially correct method.

Q	Solution	Marks	Total	Comments
1 (a)(i)	$(3+i)^2 = 8+6i$	B1	1	
(ii)	(2+4i)(3+i) = 2+14i	B1	1	
(b)(i)	8 + 6i - (2 + 14i) + 8i - 6 = 0	M1A1	2	
(ii)	$z_1 + z_2 = 2 + 4i$	B1	1	
(iii)	coefficients of quadratic not real	E1	1	
(iv)	$z_2 = -1 + 3i$	B1F	1	
(c)(i)	Points plotted	B1F	1	
(ii)	$\left z_{1}\right = \sqrt{10} = \left z_{2}\right $	M1A1	2	
(iii)	$\arg \frac{z_2}{z_1} = \arg z_2 - \arg z_1$	M1A1		Any correct method M1 Applied A1
	$=\frac{1}{2}\pi$ (Pythagoras, rotation etc)	A1	3	Allow use of decimals
	Total		13	
2	$(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6})^7 = \cos\frac{7\pi}{6} + i\sin\frac{7\pi}{6}$	B1		
	$(\cos\frac{\pi}{3}-i\sin\frac{\pi}{3})^5$			
	$=\cos\frac{5\pi}{3}-i\sin\frac{5\pi}{3}$	B1		
	Expansion of			Or
	$=(\cos\frac{7\pi}{6}+i\sin\frac{7\pi}{6})(\cos\frac{5\pi}{3}-i\sin\frac{5\pi}{3})$	M1		$\left(-\frac{\sqrt{3}}{2}-\frac{1}{2}i\right)\left(\frac{1}{2}+\frac{\sqrt{3}}{2}i\right) \qquad M1A1$
				$-\frac{\sqrt{3}}{4} - \frac{3}{4}i - \frac{1}{4}i + \frac{\sqrt{3}}{4} $ A1 -i A1
	$=\cos\left(\frac{7\pi}{6}-\frac{5\pi}{3}\right)+i\sin\left(\frac{7\pi}{6}-\frac{5\pi}{3}\right)$	A1		Allow sign error
	$=\cos(-\frac{\pi}{2})+i\sin(-\frac{\pi}{2})$	A1		
	= -i	A1	6	AG
	Total		6	

Q	Solution	Marks	Total	Comments
3 (a	<u>`</u>			or attempt at
J (a) $f(n+1)-f(n) = (n+3)^3 - n^3$	M1A1		f(n+1) - f(n) M1
	$= n^3 + 3n^2 \times 3 + 3n \times 9 + 27 - n^3$	Al		$3n^3 + 18n^2 + 42n + 36$ A1
	$= 9n^2 + 27n + 27$	A1F	4	$3n^3 + 9n^2 + 15n + 9$ A1
(b		AII		result A1
C ⁻	Assume result true for $h = k$ ie f (k) = M(9)			
	Then $f(k+1) = f(k) + M(9)$			
	= M(9) + M(9) = M(9)	M1A1		
	But $f(1) = 1^3 + 2^3 + 3^3 = 36 = M(9)$	A1		Must be clear for this A1
	P_1 true and $P_k \Rightarrow P_{k+1}$	B1	5	Only if correct or almost correct
	∴true by induction	E1		
	Total		9	
4 (a) $\sinh y = x$	M1		or $\frac{d}{dx} \ln \left(x + \sqrt{x^2 + 1} \right)$ M1
	$\cosh y \frac{\mathrm{d}y}{\mathrm{d}x} = 1$	A1		dx (dx)
	$\cos y \frac{1}{dx} = 1$			OE correctly differentiated A1
				Result A1
	dy = 1	A 1		
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{\cosh y} = \frac{1}{\sqrt{x^2 + 1}}$	A1	3	AG
(b)(i) $y = \sinh x, \ \frac{dy}{dx} = \cosh x = 1 \text{ when } x = 0$	B1		
	$y = \sinh^{-1} x, \ \frac{dy}{dx} = 1 \ \text{when } x = 0$	B1	2	
(ii) for all x , $\cosh x \ge 1$	B1		
	for all $u = \sqrt{u^2 + 1} > 1$ and $1 = 1$			
	for all $x, \sqrt{x^2 + 1} \ge 1 \therefore \frac{1}{\sqrt{x^2 + 1}} \le 1$	B2,1,0	3	
(iii		B1		
	Sketch of $y = \sinh^{-1}x$	B1	2	CAO curves must not cut for these marks
	V V			
			10	
	Total		10	

Q	Solution	Marks	Total	Comments
5 (a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-2x}{1-x^2}$	B1, B1		B1 each numerator and denominator
	$1 + \left(\frac{dy}{dx}\right)^2 = 1 + \frac{4x^2}{(1 - x^2)^2}$	M1		
	$=\frac{(1-x^2)^2+4x^2}{(1-x^2)^2}$	A1F		
	$=\frac{1-2x^2+x^4+4x^2}{\left(1-x^2\right)^2}$	A1		САО
	$=\left(\frac{1+x^2}{1-x^2}\right)^2$	A1	6	
(b)	arc length = $\int_{0}^{p} \left(\frac{1+x^2}{1-x^2}\right) dx$	M1		
	$= \int_{0}^{p} \left(\frac{2}{1-x^2} - 1\right) \mathrm{d}x$	A1		
	$\left[2\tanh^{-1}x-x\right]_0^p$	A1F		ft if hyperbolic
	$= 2 \tanh^{-1} p - p$	A1	4	AG
	Total		10	

Q	Solution	Marks	Total	Comments
6 (a)(i)	$\left(2e^{\frac{\pi i}{4}}\right)^4 = 16e^{\pi i} = -16$	B1	1	
	$z = 2e^{\left(\frac{\pi i}{4} + \frac{2k\pi i}{4}\right)}$	M1		
	$k=0, z=2e^{\frac{\pi i}{4}}$			
	other roots, $z = 2e^{-\pi i/4}$, $z = 2e^{\pm 3\pi i/4}$	A2,1,0	3	Allow if quoted correctly Deduct A1 for answers outside range indicated
(iii)	Argand diagram: $r = 2$ Properly spaced	B1 B1	2	CAO except for $r = 2$
	$\left(z - 2e^{\frac{\pi i}{4}}\right)\left(z - 2e^{-\frac{\pi i}{4}}\right)$ $= z^2 - 2\left(e^{\frac{\pi i}{4}} + e^{-\frac{\pi i}{4}}\right)z + 4e^{\frac{\pi i}{4}}e^{-\frac{\pi i}{4}}$	M1		
	$= z^2 - 2 \times 2\cos\frac{\pi}{4}z + 4$	A1		Must see some working for this A1
	$=z^2-2\sqrt{2}z+4$	A1	3	AG
(ii)	(2-2c)(2-2c)			
	$= z^{2} - 2 \times 2\cos\frac{3\pi}{4}z + 4 = z^{2} + 2\sqrt{2}z + 4$	M1A1		
	$z^4 + 16 = (z^2 - 2\sqrt{2}z + 4)(z^2 + 2\sqrt{2}z + 4)$	A1	3	If quoted allow B1
	Total		12	
	Total		60	