 OUALIFICATIONS

GCE

Mathematics A

Unit MAP2

Copyright © 2004 AQA and its licensors. All rights reserved.

Key to mark scheme

M	mark is for	method
m	mark is dependent on one or more M marks and is for	method
A	mark is dependent on M or m mark and is for	accuracy
B	mark is independent of M or m marks and is for	method and accuracy
E	mark is for	explanation
\checkmark or ft or F		follow through from previous incorrect result
CAO		correct answer only
AWFW		anything which falls within
AWRT		anything which rounds to
AG		answer given
SC		special case
OE		or equivalent
A2,1		2 or 1 (or 0) accuracy marks
$-\boldsymbol{x} \mathbf{E E}$		Deduct x marks for each error
NMS		No method shown
PI		Perhaps implied
c		Candidate

Abbreviations used in marking

MC $-\boldsymbol{x}$	deducted x marks for miscopy
MR $-\boldsymbol{x}$	deducted x marks for misread
ISW	ignored subsequent working
BOD	gave benefit of doubt
WR	work replaced by candidate

Application of mark scheme

mark as in scheme
Incorrect answer without working zero marks unless specified otherwise

[^0]

Q	Solution	Marks	Total	Comments
2 (a)(i)	Centre ($2,-2$)	B1		
(ii)	Complete the square	M1		Attempted
	$(x-2)^{2}+(y+2)^{2}=20$	A1		LHS correct
	$\therefore r^{2}=20$	A1		RHS correct
	$r=\sqrt{20} \quad$ or (AWRT 4.47)	A $1 \checkmark$	5	(on their RHS >0)
(b)	Crosses x-axis when $y=0$	M1		For use of $y=0$
	$\begin{aligned} \therefore & x^{2}-4 x-12=0 \\ & (x-6)(x+2)=0 \\ & x=6 \text { or } x=-2 \end{aligned}$	m1		For solving quadratic by any correct method attempted
	\therefore crosses x-axis at the points $(6,0) \&(-2,0)$	A1	3	Accept $x=6$ and $x=-2$ if $y=0$ used
(c)	$\text { Slope of radius }=\frac{2--2}{4-2}=\frac{4}{2}=2$	B1 \checkmark		On their centre
	Use $m_{1} m_{2}=-1$ for perpendicular lines $\therefore \text { slope of tangent }=-\frac{1}{2}$	B1」		On their slope of radius
	Equation of tangent is			If $m_{1} m_{2}=-1$ used then:
	$y-2=-\frac{1}{2}(x-4)$	M1		use of $y-y_{1}=m\left(x-x_{1}\right)$ or any other correct method
	$\begin{aligned} & 2 y-4=-x+4 \\ & x+2 y-8=0 \end{aligned}$	A1 \checkmark	4	Accept any simplified form (on their value of m)
	Total		12	

Q	Solution	Marks	Total	Comments
6 (a)	$\begin{aligned} & \mathrm{f}(1)=0.341 \\ & \mathrm{f}(2)=-0.091 \end{aligned}$ Change of sign \Rightarrow \therefore root in the interval $1 \leq x \leq 2$	M1 A1	2	
(b)(i)(ii)	$\mathrm{f}^{\prime}(x)=\cos x-\frac{1}{2}$	B1	1	
	$x_{n+1}=x_{n}-\frac{\mathrm{f}(x)}{\mathrm{f}^{\prime}\left(x_{n}\right)}=x_{n}-\frac{\sin x_{n}-\frac{1}{2} x_{n}}{\cos x_{n}-\frac{1}{2}}$	M1		$\mathrm{N}-\mathrm{R}$ formula used
	$x_{0}=2 \quad \therefore \quad x_{1}=2-\frac{\sin 2-1}{\cos 2-\frac{1}{2}}$	m1		Radians used in correct formula
	$x_{1}=1.901 \approx 1.9$	A1	3	AG
(c)(i)	$\sin ^{2} x=\frac{1}{2}(1-\cos 2 x)$			
	$\therefore \quad \int \sin ^{2} x \mathrm{~d} x=\frac{1}{2} \int(1-\cos 2 x) \mathrm{d} x$	M1		
	$=\frac{1}{2} x-\frac{1}{4} \sin 2 x+c$	A1	2	AG
(ii)	$\int_{0}^{1.9} \sin ^{2} x=\left[\frac{1}{2} x-\frac{1}{4} \sin 2 x\right]_{0}^{1.9}=1.10$	B1	1	
(d)	Volume of solid formed $=V_{1}-V_{2}$	M1		
	$\begin{aligned} V_{1} & =\pi \int_{0}^{1.90} \sin ^{2} x \mathrm{~d} x \\ & =\pi \times 1.10 \end{aligned}$	M1		for $V_{1}(3.46507)$ allow $3.46(1.10 \times \pi)$
	$\begin{aligned} &(=3.47) \\ & V_{2}=\frac{1}{3} \times \pi \times(0.95)^{2} \times 1.90 \text { or } \pi \int_{0}^{1.9}\left(\frac{1}{2} x\right)^{2} \mathrm{~d} x \\ &(=1.796) \end{aligned}$	M1		$\text { for } V_{2}$
	\therefore Volume of solid formed $=1.67$	A1		(1.66938) allow 1.66
	$\text { Volume }=1.7(2 \mathrm{sf})$	A1	5	
	Total		14	
	Total		60	

[^0]: Award method and accuracy marks as appropriate to an alternative solution using a correct method or partially correct method.

