

Mark scheme January 2004

GCE

Mathematics A

Unit MAP1

Copyright © 2004 AQA and its licensors. All rights reserved.

Key to mark scheme

M	mark is for	method
m	mark is dependent on one or more M marks and is for	method
A	mark is dependent on M or m mark and is for	accuracy
В	mark is independent of M or m marks and is for	method and accuracy
E	mark is for	explanation
$$ or ft or \mathbf{F}		follow through from previous
		incorrect result
CAO		correct answer only
AWFW		anything which falls within
AWRT		anything which rounds to
AG		answer given
SC		special case
OE		or equivalent
A2,1		2 or 1 (or 0) accuracy marks
-x EE		Deduct <i>x</i> marks for each error
NMS		No method shown
PI		Perhaps implied
c		Candidate

Abbreviations used in marking

MC-x	deducted x marks for miscopy
MR-x	deducted x marks for misread
ISW	ignored subsequent working
BOD	gave benefit of doubt
WR	work replaced by candidate

Application of mark scheme

Correct answer without working	mark as in scheme
Incorrect answer without working	zero marks unless specified otherwise
incorrect answer without working	zero marks umess specified omerwise

Award method and accuracy marks as appropriate to an alternative solution using a correct method or partially correct method.

Q	Solution	Marks	Total	Comments
1 (a)	$\int x^{\frac{1}{2}} dx = \frac{x^{\frac{3}{2}}}{\frac{3}{2}} (+c)$	M1A1	2	M1 for the correct power of x
(b)	Substitution of $x = 2$	ml		
	$\int_{0}^{2} x^{\frac{1}{2}} dx = \frac{2}{3} (2^{\frac{3}{2}})$ =\frac{4}{3}\sqrt{2}	A1F		ft wrong coeff of $x^{\frac{3}{2}}$; decimals not allowed
	$\cdots - \frac{1}{3}\sqrt{2}$	A1F	3	ditto
	Total		5	
2 (a)	$u_1 = 6, u_2 = 18$	B1B1	2	Allow 1/2 for answers 2, 6
(b)	Common ratio is 3	B1	1	Condone 1:3
(c)	Formula for sum of GP stated	M1		or used
	$S_{10} = \frac{6(3^{10} - 1)}{3 - 1}$	m1		Allow with one numerical error
	$=3(3^{10}-1)$	A1	3	Convincingly shown (AG)
	Total		6	
3 (a)	Sector area formula stated Sector area = 12.5 θ (cm ²)	M1 A1	2	or used Condone omission of units throughout
(b)(i)	Equating sector area to 6.25 $\theta = 0.5$	M1 A1	2	
(ii)	Arc length formula stated	M1		or used
	Perimeter = 22.5 (cm)	A1F	2	ft wrong value of θ
	Total		6	
4(a)(i)	Terms 102, 104	B1B1	2	
(ii)	Formula for <i>n</i> th term stated $100 + 2(n-1) = 200$	M1 m1		or used OE; allow with one numerical error
	No of terms = 51	A1	3	Allow NMS; allow 2/3 for answer 50
(b)	Formula for sum of AP stated Total length = $\frac{51}{2}$ (100+200)	M1 M1		or used OE; allow with one numerical error
	= 7650 (mm)	A1	3	SC allow 3/3 for correct answer obtained by adding all 51 numbers but NMS 1/3
	Total		8	

5 (a) $y' = 2e^{2x} \dots$ M1A1 M1 for ke^{2x} 2 x^{-2} B1 3 (b) At SP $2e^{2x} = 2x^{-2}$ m1 OE Multiplication by x^2 m1 Dep on m1 $x^2 e^{2x} = 1$ A1 3 convincingly shown (AG) (c) Take square roots, $xe^x = 1$ B1 AG (square roots must be mentioned); condone no mention of ± Then take logs, $\ln x + x = 0$ M1A1 3 AG; M1 for use of a log law or lin $e^x = x$ or $\ln 1 = 0$ (d) $f(0.5) \approx -0.19, f(0.6) \approx 0.09$ B1B1 Where $f(x) = \ln x + x$ Change of sign, so root between E1 3 AG (e) $\int (e^{2x} + 2x^{-1}) dx = \frac{1}{2}e^{2x}$ M1A1 M1 for ke^{2x} + 2 ln x (+ c) B1 3 Modulus not needed here Total 15 6(a)(i) $fg(x) = \sqrt{x-1}$ B1 2 (ii) $fg(x) = \sqrt{x-1}$ B1 1 (iii) $fg(x) = x + x = 0$ B1 1 Accept 'transformation' if clarified 'Positive' may be implied (iii) Range of h is $0 \le h(x) \le 2$ B1 <t< th=""><th>Q</th><th>Solution</th><th>Marks</th><th>Total</th><th>Comments</th></t<>	Q	Solution	Marks	Total	Comments
	5 (a)	$y'=2e^{2x}\dots$	M1A1		M1 for ke^{2x}
(b) At SP $2e^{2x} = 2x^{-2}$ Multiplication by x^2 $x^2e^{2x} = 1$ Al 3 convincingly shown (AG) (c) Take square roots, $xe^x = 1$ B1 AG (Square roots must be mentioned); condone no mention of \pm Then take logs, $\ln x + x = 0$ M1A1 3 AG; M1 for use of a log law or $\ln e^x = x$ or $\ln 1 = 0$ (d) $f(0.5) \approx -0.19, f(0.6) \approx 0.09$ Change of sign, so root between E1 3 AG (e) $\int (e^{2x} + 2x^{-1}) dx = \frac{1}{2}e^{2x}$ M1A1 M1 for ke^{2x} M1A1 M2 M2 for ke^{2x} M1A1 M2 Accept 'transformation' if clarified 'Positive' may be implied (b) (i) Fig(1) = gf(1) = 0 (b) (ii) Range of h is $0 \le h(x) \le 2$ B1 Allow any symbol for h(x); condone < for \le ; allow '0 to 2' (iii) Domain of h^{-1} is $0 \le x \le 2$ Range of h^{-1} is $1 \le h^{-1}(x) \le 5$ B1 2 Allow any symbol for $h^{-1}(x)$; condone < for \le ; allow '1 to 5' (iv) $y = \sqrt{x-1} \Rightarrow y^2 = x-1$		$\dots -2x^{-2}$	B1	3	
Multiplication by x^2 x^2 e 2x = 1		2		3	
$x^2 e^{2x} = 1$ (c) Take square roots, $xe^x = 1$ $x^2 e^{2x} = 1$ (d) Take square roots, $xe^x = 1$ $x^2 e^{2x} = 1$ $x^2 e^{2x} = 1$ $x^2 e^{2x} = 1$ B1 $x^2 e^{2x} = 1$ A2 $x^3 e^{2x} = 1$ A3 $x^3 e^{2x} = 1$ A3 $x^3 e^{2x} = 1$ A4 $x^3 e^{2x} = 1$ A5 $x^3 e^{2x} = 1$ A6 $x^3 e^{2x} = 1$ A7 $x^3 e^{2x} = 1$ A8 $x^3 e^{2x} = 1$ A1 $x^3 e^{2x} = 1$ A2 $x^3 e^{2x} = 1$ A3 $x^3 e^{2x} = 1$ A6 $x^3 e^{2x} = 1$ A7 $x^3 e^{2x} = 1$ A8 $x^3 e^{2x} = 1$ A9 $x^3 e^{2x} = 1$ A1 $x^3 e^{2x} = 1$ A2 $x^3 e^{2x} = 1$ A1 $x^3 e^{2x} = 1$ A1 $x^3 e^{2x} = 1$ A2 $x^3 e^{2x} = 1$ A1	(b)				
(e) Take square roots, $xe^x = 1$ Then take logs, $\ln x + x = 0$ M1A1 3 AG (square roots must be mentioned); condone no mention of \pm Then take logs, $\ln x + x = 0$ M1A1 3 AG; M1 for use of a log law or $\ln e^x = x$ or $\ln 1 = 0$ Where $f(x) = \ln x + x$ AG (e) $\int (e^{2x} + 2x^{-1}) dx = \frac{1}{2}e^{2x}$ M1A1 B1 3 M1 for ke^{2x} Modulus not needed here Total 15 6(a)(i) $fg(x) = \sqrt{x-1}$ B1 B1 g1(x) = $\sqrt{x-1}$ B1 g1(x) = $gf(x) = \sqrt{x-1}$ B1 (ii) $fg(1) = gf(1) = 0$ B1 1 Accept 'transformation' if clarified 'Positive' may be implied (ii) Range of h is $0 \le h(x) \le 2$ B1 AG (square roots must be mentioned); condone no mention of \pm AG; M1 for use of a log law or $\ln e^x = x$ or $\ln 1 = 0$ Where $f(x) = \ln x + x$ AG M1 for ke^{2x} Modulus not needed here					
Then take logs, $\ln x + x = 0$ Then take logs, $\ln x + x = 0$ M1A1 3 AG; M1 for use of a log law or $\ln e^x = x$ or $\ln 1 = 0$ Where $f(x) = \ln x + x$ AG (e) $\int (e^{2x} + 2x^{-1}) dx = \frac{1}{2}e^{2x}$ M1A1 B1 3 M3 for e^{2x} M1A1 M1 for e^{2x} M2 M1 for e^{2x} M2 M3 for e^{2x} M4 for e^{2x} M5 for e^{2x} M6 for e^{2x} M6 for e^{2x} M6 for e^{2x} M7 for e^{2x} M8 for e^{2x} M8 for e^{2x} M8 for e^{2x} M9 for e^{2x} P9 for e^{2x} M9 for e^{2x}		$x^2 e^{2x} = 1$	A1	3	convincingly shown (AG)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(c)	Take square roots, $xe^x = 1$	B1		` *
(d) $f(0.5) \approx -0.19, f(0.6) \approx 0.09$ Change of sign, so root between E1 3 Where $f(x) = \ln x + x$ (e) $\int (e^{2x} + 2x^{-1}) dx = \frac{1}{2}e^{2x}$ M1A1 M1 for ke^{2x} Modulus not needed here Total 15 6(a)(i) $fg(x) = \sqrt{x-1}$ B1 2 (ii) $fg(1) = gf(1) = 0$ B1 1 (b)(i) Translation 1 unit in (positive) x direction M1 A1 2 "Positive' may be implied (ii) Range of h is $0 \le h(x) \le 2$ B1 1 Allow any symbol for $h(x)$; condone $<$ for \le ; allow '0 to 2' fit wrong answer in (ii); any symbol for $x = x = x = x = x = x = x = x = x = x $		Then take logs, $1n x + x = 0$	M1A1	3	AG; M1 for use of a log law or
Change of sign, so root between E1 3 AG M1A1 M1 for ke^{2x} M1A1 B1 3 Modulus not needed here Total 15 6(a)(i) $fg(x) = \sqrt{x-1}$ $gf(x) = \sqrt{x-1}$ (ii) $fg(1) = gf(1) = 0$ B1 (iii) Range of h is $0 \le h(x) \le 2$ Range of h^{-1} is $1 \le h^{-1}(x) \le 5$ B1 2 ACcept 'transformation' if clarified 'Positive' may be implied A1 Accept 'transformation' if clarified 'Positive' may be implied 1 Allow any symbol for $h(x)$; condone $<$ for \le ; allow '0 to 2 ' ft wrong answer in (ii); any symbol for $h^{-1}(x)$; condone $<$ for \le ; allow '1 to 5 ' (iv) $y = \sqrt{x-1} \Rightarrow y^2 = x-1$ M1 M1 AG M1 ACCEPT 'transformation' if clarified 'Positive' may be implied Allow any symbol for $h(x)$; condone $<$ for \le ; allow '0 to 2 ' ft wrong answer in (ii); any symbol for $x = 1$.					$\ln e^x = x \text{ or } \ln 1 = 0$
(e) $\int (e^{2x} + 2x^{-1}) dx = \frac{1}{2}e^{2x}$ $\dots + 2 \ln x (+c)$ B1 $M1 \text{ for } ke^{2x}$ $Modulus \text{ not needed here}$	(d)				
		Change of sign, so root between	E1	3	AG
	(0)	$\int (e^{2x} + 2x^{-1}) dx - \frac{1}{2}e^{2x}$	MIAI		NG C 1 2x
Total 15 6(a)(i) $fg(x) = \sqrt{x-1}$ B1 $gf(x) = \sqrt{x-1}$ B12(ii) $fg(1) = gf(1) = 0$ B11(b)(i)Translation 1 unit in (positive) x directionM1 Allow any symbol for $h(x)$; condone $h(x)$ for $h(x)$; condone $h(x)$ for $h(x)$	(6)	_		2	
6(a)(i) $fg(x) = \sqrt{x-1}$ B1 $gf(x) = \sqrt{x-1}$ B12(ii) $fg(1) = gf(1) = 0$ B11(b)(i)Translation 1 unit in (positive) x directionM1 2 'Positive' may be implied(ii)Range of h is $0 \le h(x) \le 2$ B11 Allow any symbol for $h(x)$; condone < for \le ; allow '0 to 2'(iii)Domain of h^{-1} is $0 \le x \le 2$ B1Fft wrong answer in (ii); any symbol for $h^{-1}(x)$; condone < for \le ; allow '1 to 5'(iv) $y = \sqrt{x-1} \Rightarrow y^2 = x-1$ M1OE		+ 2 III x (+c)	DI	3	Wodulus not needed here
(ii) $gf(x) = \sqrt{x-1}$ $fg(1) = gf(1) = 0$ B12 B1(b)(i)Translation 1 unit in (positive) x directionM1 A1Accept 'transformation' if clarified 'Positive' may be implied(ii)Range of h is $0 \le h(x) \le 2$ B11 Allow any symbol for h(x); condone < for \le ; allow '0 to 2' ft wrong answer in (ii); any symbol for h(iii)Domain of h^{-1} is $1 \le h^{-1}(x) \le 5$ B12 B1FAllow any symbol for $h^{-1}(x)$; condone < for \le ; allow '1 to 5'(iv) $y = \sqrt{x-1} \Rightarrow y^2 = x-1$ M1OE			Total	15	
(ii) $fg(1) = gf(1) = 0$ B1 1 (b)(i) Translation 1 unit in (positive) x direction A1 B1 Accept 'transformation' if clarified 'Positive' may be implied (ii) Range of h is $0 \le h(x) \le 2$ B1 Allow any symbol for $h(x)$; condone $<$ for \le ; allow '0 to 2' Range of h^{-1} is $1 \le h^{-1}(x) \le 5$ B1 Allow any symbol for h(x); condone $<$ for \le ; allow '0 to 2' Allow any symbol for $h^{-1}(x)$; condone $<$ for \le ; allow '1 to 5' (iv) $y = \sqrt{x-1} \Rightarrow y^2 = x-1$ M1 OE	6(a)(i)	$fg(x) = \sqrt{x - 1}$	B1		
(ii) $fg(1) = gf(1) = 0$ B1 1 (b)(i) Translation 1 unit in (positive) x direction A1 B1 Accept 'transformation' if clarified 'Positive' may be implied (ii) Range of h is $0 \le h(x) \le 2$ B1 Allow any symbol for $h(x)$; condone $<$ for \le ; allow '0 to 2' Range of h^{-1} is $1 \le h^{-1}(x) \le 5$ B1 Allow any symbol for h(x); condone $<$ for \le ; allow '0 to 2' Allow any symbol for $h^{-1}(x)$; condone $<$ for \le ; allow '1 to 5' (iv) $y = \sqrt{x-1} \Rightarrow y^2 = x-1$ M1 OE		$gf(x) = \sqrt{x-1}$	B1	2	
(ii)Range of h is $0 \le h(x) \le 2$ B11Allow any symbol for h(x); condone < for \le ; allow '0 to 2'(iii)Domain of h^{-1} is $0 \le x \le 2$ B1F2Allow any symbol for h(x); condone < for \le ; allow '0 to 2'Range of h^{-1} is $1 \le h^{-1}(x) \le 5$ B12Allow any symbol for $h^{-1}(x)$; condone < for \le ; allow '1 to 5'(iv) $y = \sqrt{x-1} \Rightarrow y^2 = x-1$ M1OE	(ii)	, ·	B1	1	
(ii)Range of h is $0 \le h(x) \le 2$ B11Allow any symbol for h(x); condone < for \le ; allow '0 to 2'(iii)Domain of h^{-1} is $0 \le x \le 2$ B1F2Allow any symbol for h(x); condone < for \le ; allow '0 to 2'Range of h^{-1} is $1 \le h^{-1}(x) \le 5$ B12Allow any symbol for $h^{-1}(x)$; condone < for \le ; allow '1 to 5'(iv) $y = \sqrt{x-1} \Rightarrow y^2 = x-1$ M1OE	(b)(i)	Translation	M1		Accept 'transformation' if clarified
(iii) Domain of h^{-1} is $0 \le x \le 2$ Range of h^{-1} is $1 \le h^{-1}(x) \le 5$ B1 B1 Allow any symbol for $h^{-1}(x)$; condone	(1)(1)			2	
(iii) Domain of h^{-1} is $0 \le x \le 2$ Range of h^{-1} is $1 \le h^{-1}(x) \le 5$ B1 B1 Allow any symbol for $h^{-1}(x)$; condone	(**)	D (1: 0 <1/ >2	D1	1	Allers and comball Comba
(iii) Domain of h^{-1} is $0 \le x \le 2$ Range of h^{-1} is $1 \le h^{-1}(x) \le 5$ (iv) $y = \sqrt{x-1} \Rightarrow y^2 = x-1$ B1F B1F Allow any symbol for $h^{-1}(x)$; condone $<$ for \le ; allow '1 to 5' OE	(11)	Range of n is $0 \le h(x) \le 2$	BI	1	* * * * * * * * * * * * * * * * * * * *
Range of h^{-1} is $1 \le h^{-1}(x) \le 5$ B1 2 Allow any symbol for $h^{-1}(x)$; condone < for \le ; allow '1 to 5' OE	(iii)	Domain of h^{-1} is $0 \le x \le 2$	B1F		ft wrong answer in (ii); any symbol for x
(iv) $y = \sqrt{x-1} \Rightarrow y^2 = x-1$ M1 condone < for \leq ; allow '1 to 5' OE	(111)		R1	2	Allow any symbol for $h^{-1}(r)$:
(iv) $y = \sqrt{x-1} \Rightarrow y^2 = x-1$ M1		131 = 11 (x) = 5	D1	_	
	(iv)	$v = \sqrt{x-1} \Rightarrow v^2 = x-1$	M1		, and the second
		•			
				2	
So $h^{-1}(x) = x^2 + 1$ Allow NMS 3/3		So n $\bar{x} = x^{-} + 1$	AI	3	Allow NIVIS 3/3
Total 11		Total		11	

Q	Solution	Marks	Total	Comments
7 (a)	$\sin \frac{\pi}{6} = \frac{1}{2}$	B1		Allow 0.5
	$\cos \frac{\pi}{6} = \frac{\sqrt{3}}{2}$	B1		OE surd, eg $\sqrt{0.75}$
	$\tan \frac{\pi}{6} = \frac{1}{\sqrt{3}}$	B1	3	OE surd, eg $\sqrt{\frac{1}{3}}$ or $\frac{\sqrt{3}}{3}$
(b)	Either $\sin^2 x + \cos^2 x \equiv 1$ stated	M1		or used
	Elimination of $\sin x$ or of $\cos x$	ml		
	$4\cos^2 x = 3 \text{ or } 4\sin^2 x = 1$	A1		OE
	Or $\tan x \equiv \sin x / \cos x$ stated	M1		or used
	Equation in terms of tan x only	m1		
	$3 \tan^2 x = 1$	A 1		OE
	Then one value is $\frac{\pi}{6}$	B1		Condone 0.52; condone degrees or decimals throughout
	At least one other value found	M1		NMS 2/2 if completely correct list given
	Values are $\frac{\pi}{6}$, $\frac{5\pi}{6}$, $\frac{7\pi}{6}$, $\frac{11\pi}{6}$ only	A1	6	Ignore values outside domain
	To	otal	9	
	To	otal	60	