 OUALIFICATIONS

GCE

Mathematics A

Unit MAME

Copyright © 2004 AQA and its licensors. All rights reserved.

Key to mark scheme

M	mark is for	method
m	mark is dependent on one or more M marks and is for	method
A	mark is dependent on M or m mark and is for	accuracy
B	mark is independent of M or m marks and is for	method and accuracy
E	mark is for	explanation
, or ft or F		follow through from previous incorrect result
CAO		correct answer only
AWFW		anything which falls within
AWRT		anything which rounds to
AG		answer given
SC		special case
OE		or equivalent
A2,1		2 or 1 (or 0) accuracy marks
$-\boldsymbol{x} \mathbf{E E}$		Deduct x marks for each error
NMS		No method shown
PI		Perhaps implied
c		Candidate

Abbreviations used in marking

MC $-\boldsymbol{x}$	deducted x marks for miscopy
MR $-\boldsymbol{x}$	deducted x marks for misread
ISW	ignored subsequent working
BOD	gave benefit of doubt
WR	work replaced by candidate

Application of mark scheme

Correct answer without working
mark as in scheme
Incorrect answer without working zero marks unless specified otherwise

[^0]| Q | Solution | Marks | Total | Comments |
| :---: | :---: | :---: | :---: | :---: |
| 1 (a)
 (b) | Method for mean
 Mean $=0.6$ $\mathrm{E}\left(X^{2}\right)=2$
 Variance $=2-0.6^{2}=1.64$ | M1
 A1
 B1
 M1A1F | 3 | Allow even if c then divides, eg by 5
 NMS 2/2
 PI; award even if this is c's variance
 ft one wrong value; $\mathrm{NMS} 3 / 3$ |
| | Total | | 5 | |
| 2 (a)
 (b) | Median between $15^{\text {th }}$ and $16^{\text {th }}$
 Median is 42
 LQ 23, UQ 54
 LQ, M, UQ correct on box plot Whiskers to 12 and 75 | $\begin{array}{\|l} \hline \text { M1 } \\ \text { A1 } \\ \text { B1B1 } \\ \\ \text { B3F } \\ \text { B1 } \end{array}$ | 4 | PI; allow $15^{\text {th }}$ or $16^{\text {th }}$
 B1 for each; ft reasonable values from (a)
 If no clear linear scale drawn (max 3):
 LQ, M, UQ in roughly right ratio
 B1
 Numerical values of LQ, M, UQ
 all clearly shown
 B1F
 Whiskers drawn and 12,75 clearly shown
 in roughly right positions |
| | Total | | 8 | |
| 3 (a)
 (b)
 (c) | $\mathrm{f}(2)=0$
 $x-2$ is a factor $\begin{aligned} & \mathrm{f}(x)=(x-2)\left(x^{2}+6 x+9\right) \\ & \ldots=(x-2)(x+3)^{2} \end{aligned}$ | B1
 B1
 M1A1
 m1A1 | $\begin{aligned} & \hline 1 \\ & 1 \\ & 4 \end{aligned}$ | Allow NMS or $x+3$ if from Factor Theorem M1 if $6 x$ or 9 correct NMS $1 / 4$ for $2^{\text {nd }}$ factor, $4 / 4$ all correct
 If c divides by $x+2$, give M1 if $2 x$ or -9 appears
 If c writes $x+2$ and $x-3$ as factors, give B1
 If c's answer is $(x+2)(x-3)^{2}$, give B2 |
| | Total | | 6 | |
| 4(a)(i)
 (ii)
 (b) | $\begin{aligned} & \text { Mean }=\frac{320}{20}=16(\text { miles }) \\ & \text { Variance }=\frac{5300}{20}-16^{2}(=9) \\ & \text { SD }=3 \text { (miles) } \\ & \text { Mean } y=1.6 \times 16=25.6 \\ & \text { SD of } y=1.6 \times 3=4.8 \end{aligned}$ | B1
 M1
 A1
 B1F
 B1 | 2 2 | Allow NMS
 B1 for verification
 Convincingly shown (AG)
 ft wrong value for mean x |
| | Total | | 5 | |

Q	Solution	Marks	Total	Comments
5 (a) (b) (c) (d) (e)	Grad of L is negative Grad of L is $(\pm) \frac{2}{3}$ Perp grad is $\frac{3}{2}$ Req'd line is $y-1=\frac{3}{2}(x-4)$ ie $3 x-2 y=10$ Elimination of x or y Pt of int is $(6,4)$ Shortest length is $\sqrt{13}$	B1 B1 B1F M1 A1 M1 A2, 1 m1A1F	1 2 3 2	Allow NMS PI; condone $(\pm) \frac{2}{3} x$; allow NMS Condone $\frac{3}{2} x$; ft wrong answer to (a) OE; B1 for full verification Convincingly shown (AG) 2/3 for non-algebraic method ft one error in (d); allow AWRT 3.61
	Total		10	
6(a)(i) (ii) (iii) (b)	$\begin{aligned} & \mathrm{P}(\text { both })=0.1 \times 0.05=0.005 \\ & \mathrm{P}(\text { neither) })=0.9 \times 0.95=0.855 \\ & \mathrm{P}(\text { exactly one })=0.14 \end{aligned}$ Formula for conditional prob Numerator $=0.1 \times 0.95$ Denom $=0.14$ so ans $=\frac{19}{28}$	M1A1 M1A1 M1A1F M1 m1 A1F	2	ft wrong values if subtraction from 1 used Fraction with $0<\mathrm{N}<\mathrm{D}<1$ and D correct or equal to c's answer to (a)(iii) ft wrong answer to (a)(iii); Accept AWRT 0.679 or 0.678
	Total		9	
7 (a) (b) (c)	$m=3, n=-8$ Method for solving quadratic $\begin{aligned} & x=-3 \pm \sqrt{8} \text { or } \frac{-6 \pm \sqrt{32}}{2} \\ & \ldots=-3 \pm 2 \sqrt{2} \\ & -3-2 \sqrt{2}<x<-3+2 \sqrt{2} \end{aligned}$	B1B1 M1 A1 B1 B1F	2 3	This mark is for $\sqrt{8}=2 \sqrt{2} \text { or } \sqrt{32}=4 \sqrt{2}$ ft wrong answers or forms penalised in (b); allow $-5.83<x<-0.17$; condone \leq for <
	Total		6	

[^0]: Award method and accuracy marks as appropriate to an alternative solution using a correct method or partially correct method.

