

Q U A L I F I C A T I O N S A L L I A N C E Mark scheme January 2004

GCE

Mathematics A

Unit MAM4

Copyright © 2004 AQA and its licensors. All rights reserved.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 and a registered charity number 1073334. Registered address AQA, Devas Street, Manchester M15 6EX. Dr Michael Cresswell Director General

AQA

Key to mark scheme

Μ	mark is for	method
m	mark is dependent on one or more M marks and is for	method
Α	mark is dependent on M or m mark and is for	accuracy
В	mark is independent of M or m marks and is for	method and accuracy
Ε	mark is for	explanation
or ft or F		follow through from previous
		incorrect result
CAO		correct answer only
AWFW		anything which falls within
AWRT		anything which rounds to
AG		answer given
SC		special case
OE		or equivalent
A2,1		2 or 1 (or 0) accuracy marks
-x EE		Deduct <i>x</i> marks for each error
NMS		No method shown
PI		Perhaps implied
C		Candidate

Abbreviations used in marking

MC - x	deducted x marks for miscopy
MR - x	deducted x marks for misread
ISW	ignored subsequent working
BOD	gave benefit of doubt
WR	work replaced by candidate

Application of mark scheme

Correct answer without working	mark as in scheme
Incorrect answer without working	zero marks unless specified otherwise

Award method and accuracy marks as appropriate to an alternative solution using a correct method or partially correct method.

Q	Solution	Marks	Total	Comments
	$mg - 0.1mv = m\frac{\mathrm{d}v}{\mathrm{d}t}$	M1		Newton's 2 nd law
	$\frac{\mathrm{d}v}{\mathrm{d}t} = g - 0.1v$ $\int_{0}^{v} \frac{\mathrm{d}v}{g - 0.1v} = \int_{0}^{t} \mathrm{d}t$	A1	2	CAO
(b)	$\int_{0}^{v} \frac{dv}{g - 0.1v} = \int_{0}^{t} dt$	M1		Attempt at integration with correct separation of variables
	$\left[-10\ln(g-0.1v)\right]_{0}^{v} = \left[t\right]_{0}^{t}$	A2, 1		-1 EE
	$\ln \frac{g - 0.1v}{g} = -0.1t$ $v = 10g(1 - e^{-0.1t})$ As $t \to \infty$, $e^{-0.1t} \to 0$ $\therefore v \to 10g = 98$	A1F		
	$v = 10g\left(1 - e^{-0.1t}\right)$	A1F	5	Or equivalent
(c)	As $t \to \infty$, $e^{-0.1t} \to 0$	M1	1	
	$\therefore v \to 10g = 98$			
	Total		8	

	Q	Solution	Marks	Total	Comments
2	(a)	Force of attraction on meteor is			
		$\frac{6.7 \times 10^{-11} \times 5 \times 10^4 \times 10^{24}}{x^2}$	M1		
		Using $'F = ma'$			
		$-\frac{6.7 \times 10^{-11} \times 5 \times 10^4 \times 6 \times 10^{24}}{x^2} = 5 \times 10^4 a$	m1		
		x^2	A1		Correct sign
		$a = -\frac{4 \times 10^{14}}{x^2}$	A1	4	CAO
	(b)	$v\frac{\mathrm{d}v}{\mathrm{d}x} = -\frac{4\times10^{14}}{x^2}$	M1		
		$\int_{50}^{v} v dv = -4 \times 10^{14} \int_{1.44 \times 10^{7}}^{6.4 \times 10^{6}} x^{-2} dx$	M1		
			A1		Signs and limits
		$\frac{1}{2}v^2\Big _{50}^{\nu} = 4 \times 10^{14} x^{-1}\Big _{1.44 \times 10^7}^{6.4 \times 10^6}$	A1F		Integration
		$v = \sqrt{8 \times 10^{14} \left(\frac{1}{6.4 \times 10^6} - \frac{1}{1.44 \times 10^7}\right) + 50^2}$	A1F		
		$v = 8.33 \times 10^3 (\text{m s}^{-1})$	A1F	6	AWRT
		Total		10	

.

(2	Solution	Marks	Total	Comments
3	(a)	$mg\sin\theta + 2mv = -m0.98\ddot{\theta}$	M1		Newton's 2 nd law
		$g\sin\theta + 2 \times 0.98\dot{\theta} = -0.98\ddot{\theta}$	A2,1		
		For small θ , $\sin \theta = \theta$	M1		For using $v = l\dot{\theta}$
		$\therefore \ddot{\theta} + 2\dot{\theta} + 10\theta = 0$			
		Auxiliary eqn $m^2 + 2m + 10 = 0$	A1	5	САО
		$m = -1 \pm 3i$			
	(b)	$\theta = a \mathrm{e}^{-t} \sin(3t + \varepsilon)$	M1A1		M1 for attempt to solve
		$\dot{\theta} = -ae^{-t}\sin(3t+\varepsilon) + 3ae^{-t}\cos(3t+\varepsilon)$	M1A1	4	For A1: CAO
	(c)	$0 = -a\sin\varepsilon + 3a\cos\varepsilon$	M1		
		<i>ε</i> = 1.25	A1F		
		$\frac{\pi}{20} = ae^0 \sin 1.25$	m1		Attempt to solve
		<i>a</i> = 0.166	A1F		
		$\theta = 0.166e^{-t}\sin(3t + 1.25)$	A1F	5	
	(d)	$\dot{\theta} = -0.166e^{-t}\sin(3t+1.25)$			
		$+3 \times 0.166 e^{-t} \cos(3t+1.25) = 0$	M1		
		$\tan(3t+1.25) = 3$	A1		For diff and setting to zero
		3t + 1.25 = 4.39	m1		
		t = 1.05	A1F	4	AWRT
		Total		18	

Q	Solution	Marks	Total	Comments
4 (a)	Snow $\delta m \rightarrow 0$			
	Sledge			
	$\boxed{m} \longrightarrow v \boxed{m + \delta m} \longrightarrow v + \delta v$			
	Time t Time $t+\delta t$			
	Change in momentum = Impulse of ext. force	B1		
	$(m+\delta m)(v+\delta v) - mv = -5\delta t$	M1 A1		Correct sign
	As $\delta t \longrightarrow 0$			
	$mv + m\delta v + v\delta m - mv = -5\delta t$	A1		
	$(40+0.05t)\frac{\mathrm{d}v}{\mathrm{d}t} + 0.05v = -5$	A1F	5	
(b)	$\int_{8}^{v} \frac{\mathrm{d}v}{5+0.05v} = \int_{0}^{t} \frac{\mathrm{d}t}{40+0.05t}$	M1 A1		
	$-\frac{1}{0.05} [\ln(5+0.05v)]_{8}^{v}$			
	$=\frac{1}{0.05}\left[\ln(40+0.05t)\right]_{0}^{t}$	A2,1F		-1 EE
	$-\ln(5+0.05v) + \ln 6.2 = \ln(40+0.05t) - \ln 40$	A1F		
	$v = \frac{192 - t}{8 + 0.01t}$	m1 A1F	7	OE
	Total		12	

Q	Solution	Marks	Total	Comments
5 (a)	No transverse force $\Rightarrow \frac{1}{r} \frac{d}{dt} (r^2 \dot{\theta}) = 0$	M1		FB gives formula for acceleration
	$\therefore r^2 \dot{\theta} = h$	A1	2	САО
(b)	$\dot{r} = -(1 + a\cos\theta)^{-2}(-a\dot{\theta}\sin\theta)$	M1A1		
	$\dot{r} = a \frac{\dot{\theta}}{\left(1 + a\cos\theta\right)^2} \sin\theta$			
	$\dot{r} = ar^2 \dot{\theta} \sin \theta$	m1		Substitution
	$\dot{r} = ah\sin\theta$	A1	4	CAO
(c)	$\ddot{r} = ah\dot{ heta}\cos{ heta}$	M1A1		
	$F = -m(ah\dot{\theta}\cos\theta - r\dot{\theta}^2)$	M1A1		M1 for radial eqn of motion
	$F = -m\left(ah\frac{h}{r^2}\left(\frac{1}{r}-1\right) - r\left(\frac{h}{r^2}\right)^2\right)$	m1		Substitutions
	$F = -m\left(\frac{h^2}{r^3} - \frac{h^2}{r^2} - \frac{h^2}{r^3}\right)$			
	$F = m \frac{h^2}{r^2}$	A1	6	
	Total		12	
	Total		60	