 OUALIFICATIONS

GCE

Mathematics A

Unit MAM4

Copyright © 2004 AQA and its licensors. All rights reserved.

Key to mark scheme

M	mark is for	method
m	mark is dependent on one or more M marks and is for	method
A	mark is dependent on M or m mark and is for	accuracy
B	mark is independent of M or m marks and is for	method and accuracy
E	mark is for	explanation
\checkmark or ft or F		follow through from previous incorrect result
CAO		correct answer only
AWFW		anything which falls within
AWRT		anything which rounds to
AG		answer given
SC		special case
OE		or equivalent
A2,1		2 or 1 (or 0) accuracy marks
$-\boldsymbol{x}$ EE		Deduct x marks for each error
NMS		No method shown
PI		Perhaps implied
c		Candidate

Abbreviations used in marking

MC $-\boldsymbol{x}$	deducted x marks for miscopy
MR $-\boldsymbol{x}$	deducted x marks for misread
ISW	ignored subsequent working
BOD	gave benefit of doubt
WR	work replaced by candidate

Application of mark scheme

Correct answer without working
mark as in scheme
Incorrect answer without working zero marks unless specified otherwise

[^0]

Q	Solution	Marks	Total	Comments
3 (a)	$\begin{aligned} & m g \sin \theta+2 m v=-m 0.98 \ddot{\theta} \\ & g \sin \theta+2 \times 0.98 \dot{\theta}=-0.98 \ddot{\theta} \end{aligned}$	M1 A2,1		Newton's $2^{\text {nd }}$ law
	For small $\theta, \sin \theta=\theta$ $\therefore \ddot{\theta}+2 \dot{\theta}+10 \theta=0$	M1		For using $v=l \dot{\theta}$
	Auxiliary eqn $m^{2}+2 m+10=0$ $m=-1 \pm 3 \mathrm{i}$	A1	5	CAO
(b)	$\theta=a \mathrm{e}^{-t} \sin (3 t+\varepsilon)$	M1A1		M1 for attempt to solve
	$\dot{\theta}=-a \mathrm{e}^{-t} \sin (3 t+\varepsilon)+3 a \mathrm{e}^{-t} \cos (3 t+\varepsilon)$	M1A1	4	For A1: CAO
(c)	$0=-a \sin \varepsilon+3 a \cos \varepsilon$	M1		
	$\varepsilon=1.25$	A1F		
	$\frac{\pi}{20}=a e^{0} \sin 1.25$	m1		Attempt to solve
	$a=0.166$	A1F		
	$\theta=0.166 \mathrm{e}^{-t} \sin (3 t+1.25)$	A1F	5	
(d)	$\dot{\theta}=-0.166 \mathrm{e}^{-t} \sin (3 t+1.25)$			
	$+3 \times 0.166 \mathrm{e}^{-t} \cos (3 t+1.25)=0$	M1		
	$\tan (3 t+1.25)=3$	A1		For diff and setting to zero
	$3 t+1.25=4.39$	m1		
	$t=1.05$	A1F	4	AWRT
	Total		18	

Q	Solution	Marks	Total	Comments
4 (a)		B1 M1 A1 A1 A1F M1 A1 A2,1F A1F m1 A1F	7	Correct sign -1 EE OE
	Total		12	

Q	Solution	Marks	Total	Comments
5 (a)	No transverse force $\Rightarrow \frac{1}{r} \frac{\mathrm{~d}}{\mathrm{~d} t}\left(r^{2} \dot{\theta}\right)=0$	M1		FB gives formula for acceleration
	$\therefore r^{2} \dot{\theta}=h$	A1	2	CAO
(b)	$\dot{r}=-(1+a \cos \theta)^{-2}(-a \dot{\theta} \sin \theta)$	M1A1		
	$\dot{r}=a \frac{\dot{\theta}}{(1+a \cos \theta)^{2}} \sin \theta$			
	$\dot{r}=a r^{2} \dot{\theta} \sin \theta$	m1		Substitution
	$\dot{r}=a h \sin \theta$	A1	4	CAO
(c)	$\ddot{r}=a h \dot{\theta} \cos \theta$	M1A1		
	$F=-m\left(a h \dot{\theta} \cos \theta-r \dot{\theta}^{2}\right)$	M1A1		M1 for radial eqn of motion
	$F=-m\left(a h \frac{h}{r^{2}}\left(\frac{1}{r}-1\right)-r\left(\frac{h}{r^{2}}\right)^{2}\right)$	m1		Substitutions
	$F=-m\left(\frac{h^{2}}{r^{3}}-\frac{h^{2}}{r^{2}}-\frac{h^{2}}{r^{3}}\right)$			
	$F=m \frac{h^{2}}{r^{2}}$	A1	6	
	Total		12	
	Total		60	

[^0]: Award method and accuracy marks as appropriate to an alternative solution using a correct method or partially correct method.

