 OUALIFICATIONS

GCE

Mathematics A

Unit MAM3

Copyright © 2004 AQA and its licensors. All rights reserved.

Key to mark scheme

M	mark is for	method
m	mark is dependent on one or more M marks and is for	method
A	mark is dependent on M or m mark and is for	accuracy
B	mark is independent of M or m marks and is for	method and accuracy
E	mark is for	explanation
\checkmark or ft or F		follow through from previous incorrect result
CAO		correct answer only
AWFW		anything which falls within
AWRT		anything which rounds to
AG		answer given
SC		special case
OE		or equivalent
A2,1		2 or 1 (or 0) accuracy marks
$-x$ EE		Deduct x marks for each error
NMS		No method shown
PI		Perhaps implied
c		Candidate

Abbreviations used in marking

MC $-\boldsymbol{x}$	deducted x marks for miscopy
MR $-\boldsymbol{x}$	deducted x marks for misread
ISW	ignored subsequent working
BOD	gave benefit of doubt
WR	work replaced by candidate

Application of mark scheme

Correct answer without working
mark as in scheme
Incorrect answer without working zero marks unless specified otherwise

[^0]

Q	Solution	Marks	Total	Comments
2				
(a)	Resolving \downarrow $R=5 \mathrm{~W}$ Ladder in limiting equilibrium $\begin{aligned} F & =\mu R \\ & =\frac{11}{40} \times 5 \mathrm{~W} \\ & =\frac{5 \mathrm{~W}}{4} \end{aligned}$	B1 M1 A1	3	AG
(b)	Moments about A (or other appropriate point) $\begin{aligned} & 4 \mathrm{Wa} \cos \theta+W \times 2 a \cos \theta+P \times 3 a \sin \theta \\ & \quad+F \times 4 a \sin \theta=R \times 4 a \cos \theta \\ & \Rightarrow 6 W \cos \theta+3 P \sin \theta+\frac{5 W}{4} \times 4 \sin \theta \\ & \quad=5 W \times 4 \cos \theta \end{aligned}$	M1 A3,2,1		(-1 per error)
	$\begin{aligned} & \Rightarrow 3 P \times \frac{12}{13}+5 \mathrm{~W} \times \frac{12}{13}=14 \mathrm{~W} \times \frac{5}{13} \\ & \Rightarrow 36 P+60 \mathrm{~W}=70 \mathrm{~W} \\ & \Rightarrow 36 P=10 \mathrm{~W} \\ & \Rightarrow \mathrm{P}=\frac{5 \mathrm{~W}}{18} \end{aligned}$	A1 A1F	6	use of $\sin \theta=\frac{12}{13}$ etc
		Total	9	

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments \\
\hline 3 (a) \& \[
\begin{aligned}
\& \text { M.I. of element }=2 \pi \rho x \cdot x^{2} \delta x \\
\& \text { Mass of elementary ring }=2 \pi \rho x \delta x \\
\& \therefore 2 \pi \rho \int_{a}^{2 a} x^{3} \mathrm{~d} x=2 \pi \rho x^{2} \delta x \\
\& \qquad=\frac{2 \pi \rho}{4}\left[16 a^{4}-a^{4}\right] \\
\& \qquad=\frac{30 \pi \rho a^{4}}{4} \\
\& \text { but } M=3 \pi \rho a^{2} \\
\& \Rightarrow \\
\& \qquad \text { axes } I_{z}=I_{x}+I_{y} \\
\& \Rightarrow \frac{5 M a^{2}}{2}=2 I_{D} \\
\& \Rightarrow I_{D}=\frac{5 M a^{2}}{4}
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
M1 \\
M1 \\
A1 \\
M1A1 \\
A1 \\
M1 \\
A1 \\
A1
\end{tabular} \& 7

3 \&

\hline \& \& Total \& 10 \&

\hline
\end{tabular}

Q	Solution	Marks	Total	Comments
$6 \begin{array}{cc} \\ \\ & \\ \\ \\ & \\ & \text { (a) }\end{array}$	Before $\begin{aligned} & \mathrm{I}=\frac{4}{3} \times 3 \mathrm{~m} \times l^{2} \\ & =4 m l^{2} \end{aligned}$ After	A1	1	AG
(b)(i)	Collision elastic, so $\begin{aligned} & l \omega-v=-(0-u) \\ & \Rightarrow l \omega=u+s \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	AG
(ii)	Angular momentum before: Rod $=0$ Particle $=5 \mathrm{~m} \times u l=5 \mathrm{mul}$ \therefore Total $=5 \mathrm{mul}$ after: $\operatorname{Rod}=I \omega=4 m l^{2} \omega$	M1 A1		(Angular momentum attempted)
	$\begin{aligned} & \text { Particle }=5 m v l \\ & \therefore \text { Total }=4 m l^{2} \omega+5 m v l \end{aligned}$ Momentum conserved $\therefore 5 \mathrm{mul}=4 \mathrm{ml}^{2} \omega+5 \mathrm{mvl}$	A1		
		A1 M1 A1	6	Solving equations CAO (AG)
(iii) (c)	Particle moving in same direction initially $\begin{aligned} & l \omega=u+\frac{u}{9} \\ & =\frac{10 u}{9} \\ & \Rightarrow \omega=\frac{10 u}{9 l} \end{aligned}$	A1 A1	1	
		Total	11	
		Total	60	

[^0]: Award method and accuracy marks as appropriate to an alternative solution using a correct method or partially correct method.

