

Q U A L I F I C A T I O N S A L L I A N C E Mark scheme January 2004

GCE

Mathematics A

Unit MAM2

Copyright © 2004 AQA and its licensors. All rights reserved.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 and a registered charity number 1073334. Registered address AQA, Devas Street, Manchester M15 6EX. Dr Michael Cresswell Director General

AQA

Key to mark scheme

Μ	mark is for	method
m	mark is dependent on one or more M marks and is for	method
Α	mark is dependent on M or m mark and is for	accuracy
В	mark is independent of M or m marks and is for	method and accuracy
Ε	mark is for	explanation
or ft or F		follow through from previous
		incorrect result
CAO		correct answer only
AWFW		anything which falls within
AWRT		anything which rounds to
AG		answer given
SC		special case
OE		or equivalent
A2,1		2 or 1 (or 0) accuracy marks
-x EE		Deduct <i>x</i> marks for each error
NMS		No method shown
PI		Perhaps implied
c		Candidate

Abbreviations used in marking

MC - x	deducted x marks for miscopy
MR - x	deducted x marks for misread
ISW	ignored subsequent working
BOD	gave benefit of doubt
WR	work replaced by candidate

Application of mark scheme

Correct answer without working	mark as in scheme
Incorrect answer without working	zero marks unless specified otherwise

Award method and accuracy marks as appropriate to an alternative solution using a correct method or partially correct method.

Q	Solution	Marks	Total	Comments
1 (a)	Impulse = area	M1		
	$= 2000 \times 5 + \frac{1}{2}(2000) \times 5$	M1		Rectangle or triangle or trapezium area
	= 15 000 N s	A1	3	AG
(b)	Change in momentum = impulse	M1		Attempt at $ mv - mu =$ impulse from (a)
	1000 v - 0 = 15000			
	$v = 15 \text{ m s}^{-1}$	A1	2	Must state units
	Total		5	
2 (a)	. N	B1	1	
	0.01 g			
	$E = \dots \dots n^2$	M1		Formula quoted and attempt at use
(0)	$F - mr \omega$			
	$= 0.01(0.4)\omega^2$			
	$= 0.004\omega^2$			
		Al	2	
(c)	$F = \mu N$			
		M1		Use of limiting fraction
	$= 0.8 (0.77 g^{2})$			
	= 0.008g	A1		or 0.0784 seen
	Limiting, so			
	$0.004\omega^2 = 0.008g$	M1		Equates their expressions
	$\omega^2 = 2g$			
	$\omega = 4.43$	A1	4	AG
	Total		7	

	2	Solution	Marks	Total	Comments
3	(a)	$EPE = \frac{1}{2}(50)(0.03)^2$	M1		Use of correct formula
		= 0.0225 J	A1	2	
	(b)	KE + PE = EPE			
		$\frac{1}{2}mv^2 + mgh = \text{EPE}$	B1		KE or PE term correct
		$\frac{1}{2}(0.02)v^2 + (0.02)(9.8)(0.03) = 0.0225$	M1 A1√		Equation formed Equation correct; ft EPE
		$v \approx 1.29\mathrm{ms^{-1}}$	A1	4	AG
	(c)	Energy remains constant –			
		No KE at end, no EPE at end			
		(0.02)(9.8) h = 0.0225	M1A1		
		$\therefore h = 0.11 \text{ m}$	A 1√	3	ft EPE 2 sig fig accuracy
		i.e.11cm			
		Alternatives to part (c)			
		Energy remains constant			
		KE at point of release = PE on reaching max height			
		$\frac{1}{2}(0.02)(1.29)^2 = (0.02)gh$	(M1)		
		∴ <i>h</i> = 0.849	(<i>A1</i>)		
		: height above initial position $= 0.849 + 3$			
		=0.11m	(<i>A1</i> √)		ft their h value + 3
		or Use of $v^2 - u^2 = 2as$	(<i>M1</i>) (<i>A1</i>)		
		s = 0.849 distance $= 0.849 + 3 = 0.11$	(A1)		ft their $(s + 3)$ total
		Total		9	

(Q	Solution	Marks	Total	Comments
4	(a)	5cm	B1	1	
	(b)	$\Sigma mx = (\Sigma m)\overline{x}$			M1 one side correct
		About PS: $6(m)+6(m)+3(1)=(2m+1)\overline{x}$ $\overline{x} = \frac{12m+3}{2m+1}$	M1A1	3	AG
	(c)	2m+1			
		$\tan 45^\circ = \frac{\overline{x}}{5}$	M1 A1		Principle applied Equation correct – use of part (a)
		$\Rightarrow \frac{12m+3}{2m+1} = 5$	A1		Substitute and $\tan 45^\circ = 1$
		12m + 3 = 10m + 5	m1		Solving - dependent
		2m = 2			
		<i>m</i> = 1	A1	5	CAO
		Total		9	

Q		Solution	Marks	Total	Comments
5	(a)	Q O P Q Q P			
	(i)	At P, PE = $70g 5 \cos 30^{\circ}$ KE = 0 At Q, KE = $\frac{1}{2}(70)v^2$ PE = 0 Conservation of energy	B1		PE or KE term seen correct (Non zero)
		$\frac{1}{2}(70)v^{2} = 70g5\cos 30^{\circ}$ $v^{2} = 10g\cos 30^{\circ}$	M1A1		Forming equation
	(ii)	$\Rightarrow v \approx 9.21 \mathrm{ms^{-1}}$	A1	4	AG
	(11)	70 g			
		Force towards $O = T - 70g \cos 30^{\circ}$ For circular motion, $F = ma$	B1		$\pm (T - 70g\cos 30^\circ) or \frac{mv^2}{r}$ evaluated
		$\Rightarrow T - 70g\cos 30^\circ = \frac{mv^2}{r}$	M1A1		Form equation – Res.force = $\frac{mv^2}{r}$
		$\Rightarrow T - 70g\cos 30^\circ = \frac{70(9.21)^2}{5}$			
		$\Rightarrow T \approx 1782.28$			Dependent – substitute and rearrange
		$\Rightarrow T = 1780$ N	A1	5	AWRT 1780

Q		Solution	Marks	Total	Comments
5	(b)	▼ 9.21			
		30°	M1		$v^2 - u^2 = 2 as$ seen
		Vertically, $u = 9.21 \sin 30^{\circ}$	A1		Initial vertical velocity component seen
		v = 0			= 9.21sin30°
		a = -9.8 s =?			
		Using $v^2 - u^2 = 2as$:			
		$\left(\frac{9.21\sin 30^\circ}{5}\right) = 5$	M1		Substitute values into
		(2(9.8))			$v^2 - u^2 = 2as$
		$s \approx 1.08$ Approx 1 metre			Must see 1
			Al	4	
	(c)	Height of a man significant to length if			
		rope/distances involved.			
		Air resistance would reduce speed/height.	B1	1	Comment that indicates effect of
					assumption
		Total		14	
6		\xrightarrow{u} $\xrightarrow{0}$			
		(m) (m)			
		$\overrightarrow{v_2}$ $\overrightarrow{v_1}$			
	(a)	Restitution: $v_1 - v_2 = eu$	M1		Attempt at restitution
		Momentum: $mv_1 + mv_2 = mu$	M1		Attempt at momentum
		$v_1 - v_2 = e u$ (1)	A1		Both correct
		$v_1 = v_2 = cu (1)$			
		$v_1 + v_2 = u$ (2)			
		(1)+(2) $2v_1 = u(1+e)$	M1		
		$v_1 = \frac{u}{2}(1-e)$	A1		AG
		(2)-(1) $2v_2 = u(1-e)$			
		$v_2 = \frac{u}{2}(1-e)$	B1√	6	

Q	Solution	Marks	Total	Comments
6 (b)	Speed = $\frac{2}{3} \times \frac{u}{2} (1+e) = \frac{u}{3} (1+e)$	B1	1	
(c)(i)	$\frac{u}{3}(1+e) = \frac{u}{2}(1-e)$	M1		Equating
	2 + 2e = 3 - 3e			
	5 <i>e</i> =1			
	$e = \frac{1}{5}$	A1	2	Solving or showing
(ii)	Speed= $\frac{2u}{5}$	B1	1	
(d)	<i>B</i> reached wall after $\frac{5d}{3u}$	M1A1√		Attempt to find twice
	In this time A travels $\frac{5d}{3u} \times \frac{2u}{5} = \frac{2d}{3}$	M1A1√		Attempt to find distance
	A and B now have same speed so meet at half remaining distance $=\frac{1}{2}\left(\frac{d}{3}\right)$	M1		Attempt to find remaining distances
	$=\frac{d}{6}$	A1	6	Special case $\frac{5d}{6} \Rightarrow 5$ marks
	Alternative :			
	Ratio of speeds after collision = 1.5 : 1	(MIA1)		
	Ratio of distance after collision = $1:\frac{2}{3}$	(M1A1√)		
	Then $d - \frac{2}{3}d$ left $= \frac{d}{3}$	(MI)		
	Same speed to meet half way = $1 \begin{pmatrix} d \\ d \end{pmatrix} = d$	(A1)		
	$\frac{1}{2}\left(\frac{a}{3}\right) = \frac{a}{6}$			
	Total		16	
	Total		60	