 OUALIFICATIONS

GCE

Mathematics A

Unit MAM1

Copyright © 2004 AQA and its licensors. All rights reserved.

Key to mark scheme

M	mark is for	method
m	mark is dependent on one or more M marks and is for	method
A	mark is dependent on M or m mark and is for	accuracy
B	mark is independent of M or m marks and is for	method and accuracy
E	mark is for	explanation
\checkmark or ft or F		follow through from previous incorrect result
CAO		correct answer only
AWFW		anything which falls within
AWRT		anything which rounds to
AG		answer given
SC		special case
OE		or equivalent
A2,1		2 or 1 (or 0) accuracy marks
$-x$ EE		Deduct x marks for each error
NMS		No method shown
PI		Perhaps implied
c		Candidate

Abbreviations used in marking

MC $-\boldsymbol{x}$	deducted x marks for miscopy
MR $-\boldsymbol{x}$	deducted x marks for misread
ISW	ignored subsequent working
BOD	gave benefit of doubt
WR	work replaced by candidate

Application of mark scheme

Correct answer without working
mark as in scheme
Incorrect answer without working zero marks unless specified otherwise

[^0]\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments \\
\hline \begin{tabular}{l}
1 (a) \\
(b)
\end{tabular} \& \[
\mathbf{F}=\binom{6}{-2.5} \mathrm{~N}
\]
\[
|\mathbf{F}|=\sqrt{6^{2}+(-2.5)^{2}}
\]
\[
=6.5 \mathrm{~N}
\] \& \begin{tabular}{l}
B1 \\
B1 \\
M1 \\
A1F
\end{tabular} \& \[
2
\] \& \begin{tabular}{l}
B1 each component \\
Must see + \\
ft from vector in (a)
\end{tabular} \\
\hline \& \& Total \& 4 \& \\
\hline \begin{tabular}{l}
\[
2 \text { (a) }
\] \\
(b) \\
(c)
\end{tabular} \&
\[
\begin{aligned}
\& \mathrm{R}=35 g \times \cos 25^{\circ} \\
\& \mathrm{R}=311 \mathrm{~N} \\
\& \mathrm{~F}=35 g \times \sin 25^{\circ} \\
\& (=144.96) \\
\& \mathrm{F}=\mu \mathrm{R}, 144.96=\mu \times 310.86 \\
\& \quad \mu=0.466
\end{aligned}
\] \& \begin{tabular}{l}
B1 \\
M1A1 \\
A1F \\
M1A1 \\
M1 \\
A1F
\end{tabular} \& 1

3

4 \& | Three forces labelled \& with arrows, W, $m g$ or $35 g$ vertical (or 2 components of W), R and F perpendicular (ignore pairs of components of existing forces) |
| :--- |
| Component attempted \& g present for M1 $(\mathrm{R}=310.86) \text { accept AWRT } 311$ |
| Component attempted \& g present for M1 \& acceleration zero |
| Use of friction law with candidate's values, must have tried to find F ft R and F , provided $\mu>0$ M1A0 if $\mathrm{F}<\mu \mathrm{R}$ used SC accept use of $\mu=\tan \theta$ |

\hline \& \& Total \& 8 \&

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments \\
\hline \(\begin{array}{ll}3 \& \text { (a) } \\ \\ \& \text { (b) }\end{array}\) \& \begin{tabular}{l}
\[
\begin{aligned}
\& v^{2}=5^{2}+2 \times(-1.8) \times 2.5 \\
\& v= \pm 4 \mathrm{~m} \mathrm{~s}^{-1} \\
\& v=u+a t, \quad-4=4-1.8 t
\end{aligned}
\] \\
\(t=40 / 9\) or \(t=4 \frac{4}{9}\) or 4.44 sec
\end{tabular} \& \begin{tabular}{l}
M1A1 \\
A1 \\
M1A1F \\
A1F
\end{tabular} \& 3

3 \& | 3 terms for M1, accept 1.8; A1 all correct |
| :--- |
| Both required |
| M1 for full method for finding the two times at B or their difference |
| A1F if one positive \& one negative time |
| A1F for completion, including difference of times |
| Alternatives: $\begin{array}{r} s=u t+\frac{1}{2} a t^{2}, 2.5=5 t-\frac{1}{2} \times 1.8 t^{2} \\ (9 t-5)(t-5) \\ \text { time difference }=4 \frac{4}{9} \tag{A1F} \end{array}$ |
| If time from B to stopping point found, 20/9, M1A1F |
| time $\times 2,40 / 9$, A1F |

\hline \& \& Total \& 6 \&

\hline \multirow[t]{2}{*}{4 (a)(i)} \& \multirow[t]{2}{*}{$$
\begin{aligned}
\mid \text { retardation } \mid & =\frac{9}{6} \\
& =1.5 \mathrm{~m} \mathrm{~s}^{-1}
\end{aligned}
$$} \& M1 \& \& Accept \pm

\hline \& \& A1 \& 2 \& Positive answer required

\hline (ii) \& \multirow[t]{2}{*}{$$
\begin{aligned}
\text { distance } & =\frac{1}{2} \times 6 \times 9 \\
& =27 \mathrm{~m}
\end{aligned}
$$} \& M1 \& \& Method for distance

\hline \multirow[b]{2}{*}{(b)} \& \& A1F \& 2 \& ft if incorrect retardation used provided answer > 0

\hline \& $$
\text { distance }=\int\left(9-\frac{t^{2}}{4}\right) \mathrm{d} t=9 t-\frac{t^{3}}{12}(+c)
$$ \& \[

$$
\begin{aligned}
& \text { M1 } \\
& \text { A1 }
\end{aligned}
$$
\] \& \& integration attempted integration correct, constant not required

\hline \multirow[b]{4}{*}{(c)} \& use of limits $t=6$ and $t=0$ \& m1 \& \& or evaluation of constant

\hline \& distance $=36 \mathrm{~m}$ \& A1F \& 4 \& ft integration

\hline \& \& \& \& SC if $t=6$ only used, B1

\hline \& second model, as distance is greater \& B1F \& 1 \& Comparison of 2 unequal positive distances

\hline \& \& Total \& 9 \&

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments \\
\hline \begin{tabular}{l}
5 (a) \\
(b) \\
(c) \\
(d)
\end{tabular} \& \[
\begin{aligned}
\& \mathbf{v}=\left(4 t^{3}-4 t\right) \mathbf{i}+\left(12 t^{2}-4 t^{3}\right) \mathbf{j} \\
\& m \mathbf{v}=\left(t^{3}-t\right) \mathbf{i}+\left(3 t^{2}-t^{3}\right) \mathbf{j} \\
\& \frac{\mathrm{d}}{\mathrm{~d} t}(m \mathbf{v})=\left(3 t^{2}-1\right) \mathbf{i}+\left(6 t-3 t^{2}\right) \mathbf{j}
\end{aligned}
\]
\[
3 t^{2}-1=0
\]
\[
t=\frac{1}{\sqrt{3}}
\] \& \begin{tabular}{l}
M1 \\
A1A1 \\
B1F \\
M1 \\
A1FA1F \\
M1 \\
A1F
\end{tabular} \& 3
1

3

2 \& | differentiation |
| :--- |
| each term of vector |
| Accept unsimplified vector |
| differentiation |
| Accept unsimplified vector |
| Alternative: a found |
| (M1A1F) $\begin{align*} \mathbf{a} & =\left(12 t^{2}-4\right) \mathbf{i}+\left(24 t-12 t^{2}\right) \mathbf{j} \\ & \mathbf{F}(=m \mathbf{a}) \quad \text { (A1F) } \tag{A1F} \end{align*}$ |
| Exact value required, ignore \pm |

\hline \& \& Total \& 9 \&

\hline | 6 (a) |
| :--- |
| (b)(i) |
| (ii) |
| (c) | \& | $\mathrm{T}=0.4 \times 9.8=3.92 \mathrm{~N}$ |
| :--- |
| A: $0.6 g-T=0.6 a$ |
| B: $\mathrm{T}-0.4 g=0.4 a$ $\begin{aligned} & \qquad 0.2 g=a \\ & a=1.96 \mathrm{~m} \mathrm{~s}^{-2} \\ & v=0+1.96 \times 1.5 \\ & v=2.94 \mathrm{~m} \mathrm{~s}^{-1} \\ & \text { clay: } \quad S_{1}=2.94 t+\frac{1}{2} \times 9.8 t^{2} \end{aligned}$ |
| bucket: $\quad S_{2}=2.94 t$ |
| difference: $4.9 t^{2}$ | \& | B1 |
| :--- |
| M1A1 |
| A1 |
| m1 |
| A1 |
| M1 |
| A1 |
| M1A1F |
| B1F |
| B1F | \& 5

2

4 \& | Accept $0.4 g$ |
| :--- |
| M1 either equation, with 3 terms and g SC whole string method, max $3 / 5$, $0.6 g-0.4 g=(0.6+0.4) a$, $\mathrm{M} 1 \mathrm{Al} ; a$, Al m 1 for elimination of T CAO |
| Must see g term for M1, must use velocity from (b)(ii) for A1, ft velocity |
| ft velocity |
| $\mathrm{S}_{1}-\mathrm{S}_{2}$ leading to positive answer |

\hline \& \& Total \& 12 \&

\hline
\end{tabular}

Q	Solution	Marks	Total	Comments
7 (a)	$x=7 t$	B1		
	$y=0+\frac{1}{2} g t^{2}$	M1		Accept \pm
	$y=4.9 t^{2}$	A1	3	Accept \pm
(b)	$t=\frac{x}{7}$	M1		Attempt at substitution, or use of equation of trajectory with $\mathrm{V}=7 \& \alpha=0$
	$y=4.9\left(\frac{x}{7}\right)^{2}$			
	$y=\frac{x^{2}}{10}$	A1	2	CAO
(c)	$8.1=\frac{x^{2}}{10}$	M1		Full method for x, accept \pm
(d)	$x=9 \mathrm{~m}$	A1	2	AWRT 9.0 if two stages used
	vert: $v^{2}=0+2 \times 9.8 \times 8.1$	M1A1 B1		For M1 Accept \pm, for A1 consistency of signs needed
	speed $^{2}=\left(7^{2}+12.6^{2}\right)$	M1		
	$\text { speed }=14.4 \mathrm{~m} \mathrm{~s}^{-1}$	A1F	5	(14.414)
		Total	12	
		Total	60	

[^0]: Award method and accuracy marks as appropriate to an alternative solution using a correct method or partially correct method.

