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Bacterial growth: friend or foe?

Bacteria are everywhere and, of course, many people think

that they are dangerous. However, bacteria certainly

should not be considered as always posing a problem,

even when in the human body. For example, bacteria

assist in the digestion of food and aid the body’s defence

system in fighting against illness and disease. However,

some bacteria can be very dangerous when in the human

body, giving rise to illnesses such as food poisoning.

Figure 1 Bacteria cells

Such illnesses can be difficult to bring under control

because of the rapid growth of the bacteria, which can

double in number in a relatively short time.

Consider a colony of bacteria which, in favourable conditions, can double in size every 15 minutes

and starts with just one bacteria cell. A graph of the number of cells plotted against time is shown in

Figure 2. The time taken for a colony of bacteria to double in size is known as the generation time,

G, so in this example, the generation time is 15 minutes. As you can see from the graph, the

number of bacteria cells increases very rapidly and in just a few hours there will be thousands of

cells. Because of this rapid growth, logarithms may be useful when dealing with the mathematics

of the growth.

Figure 2 Number of bacteria cells, N , plotted against time, t minutes, for a colony of bacteria
with a generation time, G, of 15 minutes
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A graph of the logarithm (base e) of the number of bacteria cells plotted against time for this colony

is shown in Figure 3. As you can see, this is a straight line.

Figure 3 LnN , where N is the number of bacteria cells, plotted against time, t minutes, for a
colony of bacteria with a generation time, G, of 15 minutes
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To develop a general model of growth of bacteria, assume that there are N0 bacteria at time t ¼ 0 ,
and after an interval of time, t, there are N bacteria.

The growth can be represented by a power relationship, N ¼ N0e
kt , where k is a constant that is

related to the specific type of bacteria and the conditions in which they are growing. If in the interval

of time, t, there have been n generations, that is n doublings N ¼ N0 � 2n ¼ N02
n .

Since G ¼ t

n
,

N ¼ N02
n ¼ N02

t

G

Thus,

N0e
kt ¼ N02

t

G

Using logarithms, this can be rearranged to find an expression for k:

kt ¼ ln 2
t

G

¼ t

G
ln 2

so that, k ¼ ln 2

G

For any growth of this type you can check that the two expressions N ¼ N02
t

G and N ¼ N0e
ln2

G
t

are equivalent using a graph plotter to plot both functions on the same axes. Such growth is known

as exponential growth.

Turn over

s
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Of course, the growth rate, that is the rate of increase in the number of bacteria cells, is a very

important factor in such growth.

An average growth rate between times t1 and t2 can be found using values for the number of

bacteria N1 and N2 respectively:

average growth rate ¼ N2 � N1

t2 � t1

Alternatively, the instantaneous growth rate,
dN

dt
, at time t, can be found:

using N ¼ N0e
ln2

G
t
gives

dN

dt
¼ N0

ln 2

G
e
ln2

G
t ¼ ln 2

G
N ¼ kN ;

more easily, using N ¼ N0e
kt gives

dN

dt
¼ kN0e

kt ¼ kN .

This demonstrates the distinctive property of the growth of a population that can be modelled using

an exponential function, which is that its rate of growth,
dN

dt
, is proportional to the size of the

population, N , that is

dN

dt
¼ kN

When investigating exponential growth mathematically, we often start with this differential equation

and solve it for the case where N ¼ N0 when t ¼ 0 , which gives

lnN ¼ kt þ lnN0

N ¼ N0e
kt

and, therefore,

Further to this,
d2N

dt2
¼ k 2N .

Table 1 gives the data from an experiment that monitored the growth of a colony of bacteria in a

laboratory. These data give a measure of the population density, P, which is effectively a measure

of the number of bacteria present, every 16 minutes. Thus G can be written in terms of P.

As G ¼ t

n

G ¼ t � ln 2

ln
P

P0
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Table 1 Population density of a colony of bacteria measured every 16 minutes for
160 minutes

Time, t minutes
Population
density, P

0 2.2

16 3.6

32 6.0

48 10.1

64 16.9

80 22.7

96 36.0

112 51.0

128 70.4

144 82.7

160 92.8

Figure 4 shows the data from Table 1 plotted on a graph.

Figure 4 Graph showing the growth in population density, P, against time, t, for a colony of
bacteria
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Inspection of this graph suggests that the first eight data points appear to exhibit exponential growth

but, after this, the rate of growth appears to slow down, perhaps due to lack of nutrients. This

slowdown is confirmed by a graph that plots lnP against time, t, as shown in Figure 5.

Turn over
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Figure 5 Graph showing lnP plotted against time
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This graph also shows a straight line which is a good fit to the first eight points. The equation of this

line can be found to be lnP ¼ 0:788þ 0:029t , which suggests that the exponential function

P ¼ 2:2e0:029t can be used effectively as a model for the early stages of growth. This is confirmed

by the graph of Figure 6, which shows the data plotted against time together with a graph of this

function. As you can see, this is a close fit for t < 100 .

Figure 6 Graph plotting population density data for a colony of bacteria together with the

function P = 2.2e0:029t
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As you can see from the mathematics so far, graphs can help us to see how we might proceed in

attempting to fit functions to model biological phenomena such as the growth of bacteria. For the

case examined here, it seems that we have a reasonable model for the first 90 minutes or so of

growth.
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Another useful technique that is relatively straightforward is to look at the growth rate using the data.

This is done in Table 2, where the growth in population density, dP, at time tn, when the population

density is Pn, is found by calculating Pnþ1 � Pn .

Additionally, a relative growth rate,
dP
P
, is calculated and given in Table 2.

Table 2 The growth rate and relative growth rate for the growth in population density of a
colony of bacteria

Time, t minutes
Population
density, P

Growth rate, ddP
Relative growth

rate,
ddP
P

0 2.2 1.4 0.64

16 3.6 2.4 0.67

32 6.0 4.1 0.68

48 10.1 6.8 0.67

64 16.9 5.8 0.34

80 22.7 13.3 0.59

96 36.0 15.0 0.42

112 51.0 19.4 0.38

128 70.4 12.3 0.17

144 82.7 10.1 0.12

160 92.8

As you can see, this suggests that the relative growth rate is only relatively constant for the first four

data points and we might therefore expect to find an exponential function that is a good fit to the

data for these few points. To some extent, this is confirmed by the graph in Figure 6. However, as

we found earlier, the final few data points do not fit the exponential function. This is confirmed by

the relative growth rates calculated here.

This article provides some ideas about how mathematics might start to be used to make sense of

growth that might be described as exponential, that is where the rate of growth of a population is

proportional to the size of the population. The techniques explored here have applications in many

areas across the sciences and beyond, often allowing us to make sense of growth.

END OF DATA SHEET
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