# A-LEVEL <br> <br> Further Mathematics 

 <br> <br> Further Mathematics}

F2
Mark scheme

Specimen

Version 1.0

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

## Mark scheme instructions to examiners

## General

The mark scheme for each question shows:

- the marks available for each part of the question
- the total marks available for the question
- marking instructions that indicate when marks should be awarded or withheld including the principle on which each mark is awarded. Information is included to help the examiner make his or her judgement and to delineate what is creditworthy from that not worthy of credit
- a typical solution. This response is one we expect to see frequently. However credit must be given on the basis of the marking instructions.

If a student uses a method which is not explicitly covered by the marking instructions the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

## Key to mark types

\(\left.\begin{array}{ll}\hline M \& mark is for method <br>
dM \& mark is dependent on one or more M marks and is for method <br>

\hline R \& mark is for reasoning\end{array}\right]\)| mark is dependent on M or m marks and is for accuracy |
| :--- |
| A | | mark is independent of $M$ or m marks and is for method and |
| :--- |
| B |

## Key to mark scheme abbreviations

| CAO | correct answer only |
| :--- | :--- |
| CSO | correct solution only |
| ft | follow through from previous incorrect result |
| 'their' | Indicates that credit can be given from previous incorrect result |
| AWFW | anything which falls within |
| AWRT | anything which rounds to |
| ACF | any correct form |
| AG | answer given |
| SC | special case |
| OE | or equivalent |
| NMS | no method shown |
| PI | possibly implied |
| SCA | substantially correct approach |
| sf | significant figure(s) |
| dp | decimal place(s) |

Examiners should consistently apply the following general marking principles

## No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

## Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

## Work erased or crossed out

Erased or crossed out work that is still legible and has not been replaced should be marked. Erased or crossed out work that has been replaced can be ignored.

## Choice

When a choice of answers and/or methods is given and the student has not clearly indicated which answer they want to be marked, only the last complete attempt should be awarded marks.

| Q | Marking Instructions | AO | Marks | Typical Solution |
| :---: | :---: | :---: | :---: | :---: |
| 1 | Circles correct answer | A01.1b | B1 | $\frac{\pi}{12}$ |
|  | Total |  | 1 |  |
| 2 | Defines generalised $z$ and $z^{*}$ in Cartesian or polar form | AO1.2 | B1 | Let <br> $z=a+b \mathrm{i}$ then $z^{*}=a-b \mathrm{i}$ $\begin{aligned} z z^{*}-\|z\|^{2} & =(a+b \mathrm{i})(a-b \mathrm{i})-\left(\sqrt{a^{2}+b^{2}}\right)^{2} \\ & =a^{2}+a b \mathrm{i}-a b \mathrm{i}-(b \mathrm{i})^{2}-\left(a^{2}+b^{2}\right) \\ & =a^{2}+b^{2}-\left(a^{2}+b^{2}\right) \\ & =0 \mathrm{AG} \end{aligned}$ |
|  | Expands and simplifies $z z^{*}$ and $\|z\|^{2}$ <br> (at least one correct) | A01.1b | M1 |  |
|  | Completes a well structured argument to prove the required result. AG | AO2.1 | R1 |  |
|  | Mark awarded if they have a completely correct solution, which is clear, easy to follow and contains no slips |  |  | ALT <br> Let <br> $z=r \mathrm{e}^{\mathrm{i} \theta}$ then $z^{*}=r \mathrm{e}^{-\mathrm{i} \theta}$ $\begin{aligned} z z^{*}-\|z\|^{2} & =r \mathrm{e}^{\mathrm{i} \theta} r \mathrm{e}^{-\mathrm{i} \theta}-r^{2} \\ & =r^{2} \mathrm{e}^{\mathrm{i} \theta-\mathrm{i} \theta}-r^{2} \\ & =r^{2}-r^{2} \\ & =0 \mathrm{AG} \end{aligned}$ |
|  | Total |  | 3 |  |


| Q | Marking Instructions | AO | Marks | Typical Solution |
| :---: | :---: | :---: | :---: | :---: |
| 3 | Commences a proof by correctly setting up an equation using the definition of an invariant point | AO2.1 | R1 | For an invariant point $\mathbf{M}\binom{x}{y}=\binom{x}{y}$ |
|  | Pre-multiplies by $\mathbf{M}^{-1}$ and uses $\mathbf{M}^{-1} \mathbf{M}=\boldsymbol{I}$ | AO2.1 | R1 | Pre-multiply both sides by $\boldsymbol{M}$ |
|  | Uses inverse property to simplify $\mathbf{M}^{-1} \mathbf{M}$ and concludes their rigorous | AO2.2a | R1 | $\mathbf{M}^{-1} \mathbf{M}\binom{x}{y}=\mathbf{M}^{-1}\binom{x}{y}$ |
|  | that $(x, y)$ is invariant under |  |  | $\binom{x}{y}=\mathbf{M}^{-1}\binom{x}{y}$ |
|  |  |  |  | Therefore $\binom{x}{y}$ is a fixed point for the matrix of transformation $\mathbf{M}^{-1}$ AG |
|  | Total |  | 3 |  |


| Q | Marking Instructions | AO | Marks | Typical Solution |
| :---: | :---: | :---: | :---: | :---: |
| 4 | Expresses i or $z$ in polar form | AO1.2 | B1 | $\begin{aligned} & \mathrm{i}=\mathrm{e}^{\mathrm{i} \frac{\pi}{2}} \\ & \mathrm{z}=\left[\mathrm{e}^{\mathrm{i}\left(\frac{\pi}{2}+2 n \pi\right)}\right]^{\frac{1}{3}}=\left[\mathrm{e}^{\mathrm{i}\left(\frac{\pi}{6}+\frac{2 n \pi}{3}\right)}\right] \\ & \frac{\pi}{6}, \frac{5 \pi}{6},-\frac{\pi}{2}\left(\text { or } \frac{3 \pi}{2} \mathrm{etc}\right) \\ & \mathrm{z}=\mathrm{e}^{-\mathrm{i} \frac{\pi}{2}}, \mathrm{e}^{\mathrm{i} \frac{\pi}{6}}, \mathrm{e}^{\mathrm{i} \frac{5 \pi}{6}} \end{aligned}$ |
|  | Uses De Moivre's Theorem | A03.1a | M1 |  |
|  | Finds three consecutive values for $\theta$ | A01.1a | A1 |  |
|  | Finds all three correct solutions for z | A01.1b | A1 | ALT $\begin{aligned} & z=e^{i \theta} \Rightarrow z=\cos \theta+i \sin \theta \\ & z^{3}=\mathrm{i} \Rightarrow \cos 3 \theta+\mathrm{i} \sin 3 \theta=\mathrm{i} \\ & \therefore \cos 3 \theta=0 \text { and } \sin 3 \theta=1 \\ & \therefore \theta=\frac{\pi}{6}, \frac{5 \pi}{6},-\frac{\pi}{2}\left(\text { or } \frac{3 \pi}{2} \text { etc }\right) \\ & z=\mathrm{e}^{-i \frac{\pi}{2}}, \mathrm{e}^{\mathrm{i} \frac{\pi}{6}}, \mathrm{e}^{\mathrm{i} \frac{5 \pi}{6}} \end{aligned}$ |
|  | Total |  | 4 |  |


| Q | Marking Instructions | AO | Marks | Typical Solution |
| :---: | :---: | :---: | :---: | :---: |
| 5 | Uses De Moivre's theorem | A03.1a | M1 | $\begin{aligned} & (\cos \theta+i \sin \theta)^{5}=\frac{1}{\sqrt{2}}(1-i) \\ & \Rightarrow \cos 5 \theta+i \sin 5 \theta=\frac{1}{\sqrt{2}}(1-i) \\ & \cos 5 \theta=\frac{1}{\sqrt{2}} \quad \sin 5 \theta=-\frac{1}{\sqrt{2}} \\ & (5 \theta=) \frac{7 \pi}{4} \\ & \theta=\frac{7 \pi}{20} \end{aligned}$ |
|  | Equates real and imaginary parts and obtains two equations | A01.1a | A1 |  |
|  | Deduces that the smallest possible value of $5 \theta$ is $\frac{7 \pi}{4}$ <br> FT from 'their' equations provided M1 has been awarded | AO2.2a | A1F |  |
|  | Obtains the smallest possible value of $\theta$ from fully correct reasoning FT from 'their' $5 \theta$ provided M1 has been awarded | A01.1b | A1F |  |
|  | Total |  | 4 |  |


| Q | Marking Instructions | AO | Marks | Typical Solution |
| :--- | :--- | :---: | :---: | :--- |
| 6 | Uses proof by induction and <br> investigates the expression <br> for $n=0$ and $n=k$ (must <br> see evidence of both $n=0$ <br> and $n=k$ being considered) | AO3.1a | M1 | Let $f(n)=8^{n}-7 n+6$ <br> $\mathrm{f}(0)=1+6=7$ <br> $\Rightarrow \mathrm{f}(n)$ is divisible by 7 when $n=0$ <br> Consider $n=k$ <br> Assume that $\mathrm{f}(k)$ is divisible by 7 <br> $\mathrm{f}(k+1)=8^{k+1}-7(k+1)+6$ <br> $\mathrm{f}(k+1)-8 \mathrm{f}(k)=56 k-7(k+1)+6-48$ <br> $\mathrm{f}(k+1)-8 \mathrm{f}(k)=49 k-49$ <br> $\mathrm{f}(k+1)=8 \mathrm{f}(k)+49(k-1)$ <br> $=8 \mathrm{f}(k)+7(7 k-7)$ |
| Shows that statement is true <br> for $n=0$ | AO1.1b | B1 |  |  |


| Q | Marking Instructions | AO | Marks | Typical Solution |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{r} 6 \\ \text { ALT } \end{array}$ |  |  |  | Let $\mathrm{f}(n)=8^{n}-7 n+6$ $f(0)=1+6=7$ <br> $\Rightarrow \mathrm{f}(\mathrm{n})$ is divisible by 7 when $\mathrm{n}=0$ <br> Consider $n=k$ <br> Assume that $\mathrm{f}(k)$ is divisible by 7 $\begin{aligned} \mathrm{f}(k+1) & =8^{k+1}-7(k+1)+6 \\ & =8\left(8^{k}-7 k+6\right)+8 \times 7 k-7 k-1-48 \\ & =8 \mathrm{f}(k)+49 k-49 \\ & =8 \mathrm{f}(k)+7(7 k-7) \end{aligned}$ <br> $\therefore \mathrm{f}(k+1)$ is divisible by 7 since $\mathrm{f}(k)$ is divisible by 7 <br> Therefore <br> $f(k)$ is divisible by $7 \Rightarrow f(k+1)$ is divisible by 7 <br> Since $\mathrm{f}(0)$ is divisible by 7 and $\mathrm{f}(k)$ is divisible by $7 \Rightarrow \mathrm{f}(k+1)$ is divisible by 7 <br> then, by induction, $f(n)=8^{n}-7 n+6$ is divisible by 7 for all integers $n \geq 0$ AG |
|  | Total |  | 5 |  |


| Q | Marking Instructions | AO | Marks | Typical Solution |
| :---: | :---: | :---: | :---: | :---: |
| 7(a) | Models the motion of the ball by forming an equation of motion | A03.1b | M1 | $\begin{aligned} & m \frac{\mathrm{~d}^{2} x}{\mathrm{~d} t^{2}}=(-12.5 m x) \times 2 \\ & \Rightarrow \frac{\mathrm{~d}^{2} x}{\mathrm{~d} t^{2}}=-25 x \end{aligned}$ |
|  | Uses SHM equations to form model for displacement | A03.1a | M1 |  |
|  | Uses initial condition to find the constant | A01.1a | M1 | $\Rightarrow \dot{x}=5 A \cos (5 t)$ |
|  | Obtains correct value for constant | A01.1b | A1 | when $t=0, \dot{x}=0.75$ so $0.75=5 \mathrm{~A}$ |
|  | Interprets 'their' value to find minimum distance from $P$ | A03.2a | A1F | Hence $x=0.15 \sin (5 t)$ <br> Max displacement $=0.15$ metres from O, when $\sin (5 t)= \pm 1$, so minimum distance from P is 0.75 metres |
| (b) | Identifies a correct limitation of the model for example friction between ball and the surface or damping effect due to air | A03.5b | B1 | It is unlikely that the surface is perfectly smooth so friction will be acting. The ball will be likely to travel a smaller distance before coming to rest and the minimum distance of the ball from P may actually be greater than that calculated in part (a). |
|  | Correctly infers whether the distance is too big or too small based on the limitation they have identified. Accept any wellreasoned inference. | AO2.2b | R1 |  |
|  | Total |  | 7 |  |


| Q | Marking Instructions | AO | Marks | Typical Solution |
| :---: | :---: | :---: | :---: | :---: |
| 8 | Selects suitable split in choosing $u$ and $v$ using integration by parts | A03.1a | M1 | $\begin{aligned} & I_{n}=\int_{0}^{\frac{\pi}{2}} \sin ^{n} x \mathrm{~d} x \\ &=\int_{0}^{\frac{\pi}{2}}\left(\sin ^{n-1} x\right)(\sin x) \mathrm{d} x \\ & u=\sin ^{n-1} x \quad \frac{\mathrm{~d} u}{\mathrm{~d} x}=(n-1) \sin ^{n-2} x \cos x \\ & \frac{\mathrm{~d} v}{\mathrm{~d} x}=\sin x \quad v=-\cos x \\ & I_{n}=\left[-\cos x \sin ^{n-1} x\right]_{0}^{\frac{\pi}{2}} \\ &+(n-1) \int_{0}^{\frac{\pi}{2}} \sin ^{n-2} x \cos ^{2} x \mathrm{~d} x \\ & I_{n}=[0]+(n-1) \int_{0}^{\frac{\pi}{2}} \sin ^{n-2} x\left(1-\sin ^{2} x\right) \mathrm{d} x \\ &=(n-1) \int_{0}^{\frac{\pi}{2}} \sin ^{n-2} x-\sin ^{n} x \mathrm{~d} x \\ &=(n-1)\left(I_{n-2}-I_{n}\right) \\ & \therefore I_{n}=(n-1) I_{n-2}-n I_{n}+I_{n} \\ & \Rightarrow n I_{n}=(n-1) I_{n-2} \end{aligned}$ <br> AG |
|  | Uses integration by parts (allow one sign error) | A01.1a | M1 |  |
|  | Integrates fully correctly (no need to be simplified) | A01.1b | A1 |  |
|  | Uses the identity $\cos ^{2} x=1-\sin ^{2} x$ in $\int \cos ^{2} x \sin ^{n-2} x \mathrm{~d} x(\mathrm{PI})$ | A01.1b | B1 |  |
|  | Completes rigorous argument to show result with all steps in the argument clearly set out AG | AO2.1 | R1 |  |


| Q | Marking Instructions | AO | Marks | Typical Solution |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | ALT $\begin{aligned} I_{n} & =\int_{0}^{\frac{\pi}{2}} \sin ^{n-2} x \sin ^{2} x \mathrm{~d} x \\ & =\int_{0}^{\frac{\pi}{2}} \sin ^{n-2} x\left(1-\cos ^{2} x\right) \mathrm{d} x \\ & =I_{n-2}-\int_{0}^{\frac{\pi}{2}} \sin ^{n-2} x \cos ^{2} x \mathrm{~d} x \\ & =I_{n-2}-\int_{0}^{\frac{\pi}{2}}\left(\sin ^{n-2} x \cos x\right) \cos x \mathrm{~d} x \\ u & =\cos x \quad \frac{\mathrm{~d} u}{\mathrm{~d} x}=-\sin x \\ \frac{\mathrm{~d} v}{\mathrm{~d} x} & =\sin ^{n-2} x \cos x \quad v=\frac{1}{(n-1)} \sin ^{n-1} x \\ I_{n} & =I_{n-2}-\left[\frac{1}{(n-1)} \sin ^{n-1} x \cos x\right]_{0}^{\frac{\pi}{2}} \\ & -\int_{0}^{\frac{\pi}{2}} \frac{1}{(n-1)} \sin x \sin ^{n-2} x \mathrm{~d} x \\ & =I_{n-2}-[0]-\frac{1}{(n-1)} \int_{0}^{\frac{\pi}{2}} \sin ^{n} x \mathrm{~d} x \\ & =I_{n-2}-\frac{1}{(n-1)} I_{n} \\ \therefore & (n-1) I_{n}=(n-1) I_{n-2}-I_{n} \\ \Rightarrow & n I_{n}=(n-1) I_{n-2} \quad \text { AG } \end{aligned}$ |
|  | Total |  | 5 |  |


| Q | Marking Instructions | AO | Marks | Typical Solution |
| :---: | :---: | :---: | :---: | :---: |
| 9(a) | Explains that the claim is incorrect as singular square matrices do not have inverses. | AO2.3 | E1 | Statement is incorrect if either matrix is singular/has determinant equal to zero as the inverse will not exist <br> $\mathrm{Eg}\left[\begin{array}{ll}2 & 2 \\ 3 & 3\end{array}\right]$ is singular |
|  | Correctly gives an example of a singular matrix. | A01.1b | B1 |  |
| (b) | Correctly refines the statement using 'non-singular' or equivalent wording | AO2.3 | B1 | Given any two non-singular square matrices, $\mathbf{A}$ and $\mathbf{B}$, then $(A B)^{-1}=B^{-1} A^{-1}$ |
| (c) | Correctly recalls the inverse property for matrices $\mathbf{A}$ and $\mathbf{B}$ (seen at least once) | AO1.2 | B1 | $A$ and $B$ are non-singular so inverses exist hence <br> A and $\mathbf{B}$ are non-singular so inverses exist hence $\begin{aligned} (A B)\left(B^{-1} A^{-1}\right) & =A\left(B^{-1}\right) A^{-1} \\ & =A I A^{-1} \\ & =A A^{-1} \\ & =\boldsymbol{I} \end{aligned}$ <br> Since $(\mathrm{AB})\left(\mathrm{B}^{-1} \mathrm{~A}^{-1}\right)=I$ <br> Then $(A B)^{-1}=\left(B^{-1} A^{-1}\right)$ |
|  | Correctly uses associativity by regrouping (seen at least once) | AO2.5 | B1 |  |
|  | Correctly applies the identity property throughout and concludes their rigorous mathematical argument with no errors or omissions | AO2.1 | R1 |  |
|  | Total |  | 6 |  |


| Q | Marking Instructions | AO | Marks | Typical Solution |
| :---: | :---: | :---: | :---: | :---: |
| 10 | Splits integrand into partial fractions of the form $\frac{\mathrm{A} x+\mathrm{B}}{x^{2}+5}+\frac{\mathrm{C}}{3 x+2}$ | A03.1a | M1 | $\begin{aligned} & \frac{4 x-30}{\left(x^{2}+5\right)(3 x+2)} \equiv \frac{\mathrm{A} x+\mathrm{B}}{x^{2}+5}+\frac{\mathrm{C}}{3 x+2} \\ & \Rightarrow 4 x-30 \equiv(\mathrm{Ax}+\mathrm{B})(3 x+2)+\mathrm{C}\left(x^{2}+5\right) \end{aligned}$ <br> Compare coefficients of $x$ : $4=2 A+3 B$ <br> Compare coeffcients of $x^{2}$ : $0=3 A+C$ <br> Compare constant terms $\begin{aligned} & -30=2 \mathrm{~B}+5 \mathrm{C} \\ & \therefore-30=2 \mathrm{~B}-15 \mathrm{~A} \\ & -30=2 \mathrm{~B}-15\left(\frac{4-3 \mathrm{~B}}{2}\right) \\ & \mathrm{B}=0 \\ & \mathrm{~A}=2 \\ & \mathrm{C}=-6 \\ & \int \frac{4 x-30}{\left(x^{2}+5\right)(3 x+2)} \mathrm{d} x=\int \frac{2 x}{x^{2}+5}-\frac{6}{3 x+2} \mathrm{dx} \\ & \int_{0}^{\infty} \frac{4 x-30}{\left(x^{2}+5\right)(3 x+2)} \mathrm{d} x \\ & =\lim _{a \rightarrow \infty} \int_{0}^{a} \frac{2 x}{x^{2}+5}-\frac{6}{3 x+2} \mathrm{~d} x \\ & =\lim _{a \rightarrow \infty}\left[\ln \left(x^{2}+5\right)-2 \ln (3 x+2)\right]_{0}^{a} \\ & =\lim _{a \rightarrow \infty}\left[\ln \left(\frac{x^{2}+5}{(3 x+2)^{2}}\right)\right]_{0}^{a} \\ & =\lim _{a \rightarrow \infty}\left[\ln \left(\frac{a^{2}+5}{9 a^{2}+12 x+4}\right)-\ln \left(\frac{5}{4}\right)\right] \\ & =\ln \left(\frac{1}{9}\right)-\ln \left(\frac{5}{4}\right) \\ & =\ln \left(\frac{4}{45}\right) \end{aligned}$ |
|  | Sets up an identity from which to solve for $A, B$ and $C$ | A01.1a | M1 |  |
|  | Obtains correct values of A, B and C CAO | A01.1b | A1 |  |
|  | Integrates 'their' two terms correctly <br> FT provided both M1 marks awarded | A01.1b | A1F |  |
|  | Applies the laws of logs to 'their' integral correctly | A01.1a | M1 |  |
|  | Applies limits (a and 0) to 'their' integral correctly | A01.1a | M1 |  |
|  | Shows the limiting process used with clear detailed working | AO2.1 | R1 |  |
|  | Obtains correct single term solution CAO | A01.1b | A1 |  |
|  | Total |  | 8 |  |


| Q | Marking Instructions | AO | Marks | Typical Solution |
| :---: | :---: | :---: | :---: | :---: |
| 11(a) | Uses $\frac{1}{2} \int r^{2} \mathrm{~d} \theta$ or $\int_{0}^{\pi} r^{2} \mathrm{~d} \theta$ OE | A01.1a | M1 | $\frac{1}{2} \int(4+2 \cos \theta)^{2} \mathrm{~d} \theta$ |
|  | Rewrites $\cos ^{2} \theta$ in terms of $\cos 2 \theta$ | A01.1a | M1 | $\begin{aligned} & \frac{1}{2} \int_{-\pi}^{\pi}\left(16+16 \cos \theta+4 \cos ^{2} \theta\right) \mathrm{d} \theta \\ & \int_{-\pi}^{\pi}(8+8 \cos \theta+(1+\cos 2 \theta)) \mathrm{d} \theta \end{aligned}$ |
|  | Correctly integrates their expression, ft wrong non-zero coefficients. | A01.1b | A1F | $=\left[8 \theta+8 \sin \theta+\theta+\frac{1}{2} \sin 2 \theta\right]_{-\pi}^{\pi}$ |
|  | Obtains required answer from fully correct mathematical argument | AO2.1 | R1 | $\begin{aligned} & =\left[9 \theta+8 \sin \theta+\frac{1}{2} \sin 2 \theta\right]_{-\pi} \\ = & (9 \pi+0+0)-(-9 \pi+0+0) \\ = & 18 \pi \end{aligned}$ |
| (b) | Selects appropriate method to determine polar equation by equating OA and OB to find $\theta$ | A03.1a | M1 | Let $\mathrm{A}\left(r_{1}, \theta_{1}\right)$ and $\mathrm{B}\left(r_{2}, \theta_{2}\right)$ $\begin{aligned} & \mathrm{OA}=\mathrm{OB} \Rightarrow r_{1}=r_{2} \\ & \Rightarrow 4+2 \cos \theta_{1}=4+2 \cos \theta_{2} \\ & \Rightarrow \theta_{1}=-\theta_{2} \end{aligned}$ <br> Angle $\mathrm{AOB}=\frac{\pi}{3} \Rightarrow \theta_{1}-\theta_{2}=\frac{\pi}{3}$ $\Rightarrow \theta_{1}=\frac{\pi}{6} \text { and } \theta_{2}=-\frac{\pi}{6}$ $\mathrm{OA}=\mathrm{OB}=4+\sqrt{3}$ <br> $A B$ is perpendicular to the initial line <br> Polar equation of $A B$ is $r \cos \theta=(4+\sqrt{3}) \frac{\sqrt{3}}{2} \text { for }-\frac{\pi}{6} \leq \theta \leq \frac{\pi}{6}$ |
|  | Uses the above to find two values of $\theta$ and hence deduce the lengths of $O A$ and $O B$ <br> Award this mark for correct deduction using 'their' values of $\theta$ | AO2.2a | R1 |  |
|  | Uses the correct polar equation for a perpendicular line $r=d \sec \theta$ | A03.1a | M1 |  |
|  | Obtains a correct equation for $A B$ (including correct specified range) CAO | A01.1b | A1 |  |
|  | Total |  | 8 |  |



| Q | Marking Instructions | AO | Marks | Typical Solution |
| :---: | :---: | :---: | :---: | :---: |
| 12(b) | Forms the characteristic equation of $M$ | A03.1a | M1 | $\begin{aligned} & \left\|\begin{array}{ccc} -1-\lambda & 2 & -1 \\ 2 & 2-\lambda & -2 \\ -1 & -2 & -1-\lambda \end{array}\right\|=0 \\ & (-1-\lambda)[(2-\lambda)(-1-\lambda)-4] \\ & -2(-2-2 \lambda-2)-1(-4+2-\lambda)=0 \\ & -\lambda^{3}+12 \lambda+16=0 \\ & (4-\lambda)\left(\lambda^{2}+4 \lambda+4\right)=0 \\ & -(\lambda+2)(\lambda-4)(\lambda+2)=0 \end{aligned}$ <br> Eigenvalues are 4, $-2,-2$ $\begin{aligned} & {\left[\begin{array}{ccc} -1 & 2 & -1 \\ 2 & 2 & -2 \\ -1 & -2 & -1 \end{array}\right]\left[\begin{array}{l} x \\ y \\ z \end{array}\right]=-2\left[\begin{array}{l} x \\ y \\ z \end{array}\right]} \\ & x+2 y-z=0 \\ & {\left[\begin{array}{l} 1 \\ 0 \\ 1 \end{array}\right] \text { and }\left[\begin{array}{l} -1 \\ 1 \\ 1 \end{array}\right]} \\ & \mathbf{D}=\left[\begin{array}{ccc} 4 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{array}\right] \\ & \mathbf{U}=\left[\begin{array}{ccc} 1 & 1 & -1 \\ 2 & 0 & 1 \\ -1 & 1 & 1 \end{array}\right] \end{aligned}$ |
|  | Obtains the correct characteristic equation unsimplified | A01.1b | A1 |  |
|  | Obtains roots and identifies them as eigenvalues for 'their' characteristic equation | A01.1b | A1F |  |
|  | Forms an appropriate matrix equation using the eigenvalue -2 FT 'their' eigenvalue | A03.1a | M1 |  |
|  | Expands and simplifies to obtain a single equation in $x, y$ and $z$ <br> FT 'their' matrix equation provided both M1 marks have been awarded | A01.1b | A1F |  |
|  | Correctly deduces two linearly independent eigenvectors CAO | AO2.2a | A1 |  |
|  | Correctly identifies that the matrix D must include 4 and 'their' other eigenvalue(s) | AO1.2 | B1F |  |
|  | Correctly identifies the corresponding U matrix from 'their' eigenvectors | A01.1b | A1F |  |
|  | Total |  | 11 |  |



| Q | Marking Instructions | AO | Marks | Typical Solution |
| :---: | :---: | :---: | :---: | :---: |
|  | Uses vector product and expands brackets correctly | A01.1a | M1 | $\begin{aligned} & \|(\mathbf{a}+5 \mathbf{b}) \times(\mathbf{a}-4 \mathbf{b})\| \\ & =\|\mathbf{a} \times \mathbf{a}-4 \mathbf{a} \times \mathbf{b}+5 \mathbf{b} \times \mathbf{a}-20 \mathbf{b} \times \mathbf{b}\| \\ & =\|\mathbf{0}-4 \mathbf{a} \times \mathbf{b}+5 \mathbf{b} \times \mathbf{a}-\mathbf{0}\| \end{aligned}$ <br> since $\mathbf{a}$ is parallel to $\mathbf{a}$ and $\mathbf{b}$ is parallel to $\mathbf{b}$ then $\mathbf{a} \times \mathbf{a}=0$ and $\mathbf{b} \times \mathbf{b}=\mathbf{0}$ |
|  | Uses the correct notation and correct order with the vector product. | AO2.5 | B1 |  |
|  | Reduces the number of terms in 'their' expression by using $\mathbf{a} \times \mathbf{a}=\mathbf{b} \times \mathbf{b}=\mathbf{0}$ | A01.1a | M1 | $\begin{aligned} & =\|-4 \mathbf{a} \times \mathbf{b}-5 \mathbf{a} \times \mathbf{b}\| \\ & \text { since } \mathbf{a} \times \mathbf{b}=-\mathbf{b} \times \mathbf{a} \end{aligned}$ |
|  | and explains their reasoning (must have clear statement that $\mathbf{a} \times \mathbf{a}=0$ ) | AO2.4 | E1 | $=\|-9 \mathbf{a} \times \mathbf{b}\|$ |
|  | Uses $-\mathbf{a} \times \mathbf{b}=\mathbf{b} \times \mathbf{a}$ to collect 'their' terms together | A01.1a | M1 | $=9\|\mathbf{a}\| \mathbf{\| b \|} \sin 90$ |
|  | and explains their reasoning (must have clear statement that $-\mathbf{a} \times \mathbf{b}=\mathbf{b} \times \mathbf{a}$ OE) | AO2.4 | E1 |  |
|  | Recalls correctly the formula for the modulus of the vector product (may see $\|\mathbf{a}\| \times\|\mathbf{b}\| \sin \theta$ or may see $\|\mathbf{a}\| \times\|\mathbf{b}\| \sin 90^{\circ}$ ) | AO1.2 | B1 |  |
|  | Obtains $\|\mathbf{a} \times \mathbf{b}\|=\|\mathbf{a}\|\|\mathbf{b}\|$ since vectors $\mathbf{a}$ and $\mathbf{b}$ are perpendicular | A01.1b | A1 |  |
|  | Compares expressions to correctly deduce the value of $k$ CAO | AO2.2a | R1 | Hence $k=9$ |
|  | Total |  | 9 |  |


| Q | Marking Instructions | AO | Marks | Typical Solution |
| :---: | :--- | :---: | :---: | :--- |
| (a) | Commences an argument by <br> correctly expanding brackets and <br> simplifying final term to $1 / 16$ | AO1.1a | M1 | $\left(1-\frac{1}{4} \mathrm{e}^{2 i \theta}\right)\left(1-\frac{1}{4} \mathrm{e}^{-2 i \theta}\right)$ <br> $=1-\frac{1}{4} \mathrm{e}^{2 i \theta}-\frac{1}{4} \mathrm{e}^{-2 i \theta}+\frac{1}{16}$ |
|  | Substitutes correctly for both <br> $\mathrm{e}^{2 \mathrm{i} \theta}$ and e $\mathrm{e}^{-2 i \theta}$ in terms of $\cos 2 \theta$ <br> and $\sin 2 \theta$ (seen anywhere in <br> solution) | AO1.1b | B1 | $=\frac{17}{16}-\frac{1}{4}(\cos 2 \theta+\mathrm{i} \sin 2 \theta)-\frac{1}{4}(\cos 2 \theta-\mathrm{i} \sin 2 \theta)$ <br> $=\frac{17}{16}-\frac{1}{2} \cos 2 \theta$ <br> $=\frac{1}{16}(17-8 \cos 2 \theta)$ |
|  | Completes argument and reaches <br> stated result by collecting terms <br> and simplifying correctly, no <br> errors in working seen AG | AO2.1 | R1 | AG |


| Q | Marking Instructions | AO | Marks | Typical Solution |
| :---: | :---: | :---: | :---: | :---: |
| (c) | Deduces that the series in part (c) is related to the real part of the series in part (b) | AO2.2a | R1 | Series stated = real part of the series $e^{2 i \theta}+\frac{1}{4} e^{4 i \theta}+\frac{1}{16} e^{6 i \theta}+\frac{1}{64} e^{8 i \theta}+\ldots$. |
|  | Selects an appropriate method by using the result in part (b) and multiplying appropriately to realise the denominator | A03.1a | M1 | Using result from previous part $\frac{\mathrm{e}^{2 \mathrm{i} \theta}}{1-\frac{1}{4} \mathrm{e}^{2 \mathrm{i} \theta}}=\frac{\mathrm{e}^{2 \mathrm{i} \theta}}{\left(1-\frac{1}{4} \mathrm{e}^{2 \mathrm{i} \theta}\right)} \times \frac{\left(1-\frac{1}{4} \mathrm{e}^{-2 \mathrm{i} \theta}\right)}{\left(1-\frac{1}{4} \mathrm{e}^{-2 i \theta}\right)}$ |
|  | Substitutes to obtain an expression with cosines and sines only - using part (a) <br> FT incorrect sum to infinity provided M1 has been awarded | A01.1b | A1F | $\begin{aligned} & =\frac{\mathrm{e}^{2 \mathrm{i} \theta}-\frac{1}{4}}{\left(1-\frac{1}{4} \mathrm{e}^{2 \mathrm{i} \theta}\right)\left(1-\frac{1}{4} \mathrm{e}^{-2 i \theta}\right)} \\ & \cos 2 \theta-\frac{1}{4}+\mathrm{i} \sin 2 \theta \end{aligned}$ |
|  | Identifies the real part and correctly completes the argument to reach the stated result. <br> Only award for an error-free fully correct solution | AO2.1 | R1 | 16 <br> Real part $=$ $\frac{\cos 2 \theta-\frac{1}{4}}{\frac{1}{16}(17-8 \cos 2 \theta)}=\frac{16 \cos 2 \theta-4}{17-8 \cos 2 \theta}$ |
| (d) | Identifies the imaginary part and states the correct expression | AO2.2a | R1 | Required series = imaginary part of the given series hence $\frac{\sin 2 \theta}{\frac{1}{16}(17-8 \cos 2 \theta)}=\frac{16 \sin 2 \theta}{17-8 \cos 2 \theta}$ |
|  | Total |  | 10 |  |


| Q | Marking Instructions | AO | Marks | Typical Solution |
| :---: | :---: | :---: | :---: | :---: |
| 16 | Uses the mathematical model to find the volume by first finding the coordinate of A . <br> To award this mark must see an attempt to find coords of $A$, and an attempt at volume of prism | A03.4 | M1 | $\begin{aligned} & x=4 t-4 \\ & y=12-12 t \\ & z=4 \\ & 4 t-4-3(12-12 t)=0 \\ & 40 t-40=0 \\ & t=1 \\ & \left(\begin{array}{ll} 0 & 0 \end{array}\right) \\ & \text { OR } \\ & \left.\left[\begin{array}{l} x \\ y \\ z \end{array}\right)-\left(\begin{array}{c} -4 \\ 12 \\ 4 \end{array}\right)\right] \times\left(\begin{array}{c} 4 \\ -12 \\ 0 \end{array}\right)=\left(\begin{array}{l} 0 \\ 0 \\ 0 \end{array}\right) \\ & \left(\begin{array}{l} 3 y+4 \\ y-12 \\ z-4 \end{array}\right) \times\left(\begin{array}{c} 4 \\ -12 \\ 0 \end{array}\right)=\left(\begin{array}{l} 0 \\ 0 \\ 0 \end{array}\right) \\ & 12(z-4)=0 \Rightarrow z=4 \\ & -12(3 y+4)-4(y-12)=0 \\ & \Rightarrow y=0, x=0 \end{aligned}$ <br> A has coordinates ( $0,0,4$ ) $\begin{gathered} \overrightarrow{\mathrm{AB}}=\left(\begin{array}{l} 3 \\ 1 \\ 7 \end{array}\right) \\ \overrightarrow{\mathrm{AC}}=\left(\begin{array}{l} 9 \\ 3 \\ 0 \end{array}\right) \\ \overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}=\left(\begin{array}{c} -21 \\ 63 \\ 0 \end{array}\right) \end{gathered}$ <br> Area $A B C=\frac{21 \sqrt{10}}{2}$ $d=4 \sqrt{10}$ <br> Volume $=$ $V=\frac{21 \sqrt{10}}{2} \times 4 \sqrt{10}=420 \mathrm{~m}^{3}$ |
|  | Selects method involving both equation of plane and equation of line to find coords of A <br> Either using parametric form or using cross product Ignore sign errors | A03.1a | M1 |  |
|  | Either collects terms together and solves to find value of parameter for 'their' equation Or correctly calculates cross product for 'their' vectors | A01.1b | A1F |  |
|  | Deduces the correct coordinates of A | AO2.2a | A1 |  |
|  | Selects a correct approach to calculate the volume of the prism. | A03.1a | M1 |  |
|  | Finds two sides of the triangle $A B C$ in vector form FT 'their' $A$ | A01.2 | A1F |  |
|  | Finds area of ABC FT 'their' A | A01.1b | A1F |  |
|  | Finds length of prism FT 'their' A | A01.1b | A1F |  |
|  | Gives their answer in context by correctly finding the volume of the roof with correct units. FT 'their' prism | A01.1b | A1F |  |
|  | Total |  | 9 |  |
|  | Total |  | 100 |  |

