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Answer all questions in the spaces provided. 

    
 

 1   A vector is given by a =  
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which vector is not perpendicular to a? 

Circle your answer. 
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 2   
 

Use the definitions of cosh x and sinh x in terms of e x  and e x  to show that                       
cosh² x − sinh² x ≡ 1 

[2 marks]
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 3 (a)  
 

Given that 

( )( )( )r r r  
2

1 2 3
 ≡ 

)2)(1(  rr

A
 + 

)3)(2(  rr

B
 

find the values of the integers A and B 
[2 marks]

     

  

  

  

  

 
 

 3 (b)  
 

Use the method of differences to show clearly that 

( )( )( )r r r r


  

97

9

1 89

1 2 3 19800
 

 [4 marks]
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 4   
 

A student states that d
2

0

cos sin

cos sin

x x
x

x x




 is not an improper integral because 

x x

x x




cos sin

cos sin
 

is defined at both x  0 and 
π

x 
2  

Assess the validity of the student’s argument. 

 
 [2 marks]
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(a) 

 
 

p( )z z z az b   4 23 , a , b  

i2 3  is a root of the equation p( )z  0  
 

Express p( )z as a product of quadratic factors with real coefficients. 
 [5 marks]

     

  

  

  

  

  

  

  

  

  

  

  

  

  

 

 5 (b)  
 

Solve the equation p( )z  0 .  
[1 mark]
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 6 (a)  
 

Obtain the general solution of the differential equation 

tan x 
d
d
y
x

 + y =  sin x tan x 

where 0  x  
2

π
 

 [5 marks]

     

  

  

  

  

  

  

  

  

  

 

 6 (b)  
 

Hence find the particular solution of this differential equation, given that  y = 
22

1

 

when x = 
4

π
 

 [2 marks]
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 7   
 

Three planes have equations,  

x y kz   3  

kx y z   3 5 1  

x y z   2 3 4   

Where k is a real constant. The planes do not meet at a unique point. 

 7 (a)  
 

Find the possible values of k  
[3 marks]
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 7 (b)  
 

There are two possible geometric configurations for the given planes. 

Identify each possible configurations, stating the corresponding value of k 

Fully justify your answer.  
[5 marks]

     

  

  

  

  

  

  

  

  

  

  

 

 7 (c)  
 

Given further that the equations of the planes form a consistent system, find the solution 
of the system of equations.  

[3 marks]
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 8   
 

A curve has equation 

x
y

x





5 4

1  
 

 8 (a)  
 

Sketch the curve.  
[4 marks]
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 8 (b)  
 

Hence sketch the graph of  
x

y
x





5 4

1
 . 

[1 mark]
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 9   
 

The line L has Cartesian equations 
y

x p z
q


   

2
3  and the plane π has  

equation r.

 

 
  
  

1

1

2

 + 3 = 0 

 

 9 (a)  
 

In the case where the plane fully contains the line, find the values of p and q.  
[3 marks]

     

  

  

  

  

  

 

 9 (b)  
 

In the case where the line intersects the plane at a single point, find the range of values 
of p and q.  

[3 marks]
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 9 (c)  
 

In the case where the angle θ between the line and the plane satisfies  
1

sin
6

 and 

the line intersects the plane at z  0  

 9 (c) (i) 
 

Find the value of q.  
[4 marks]

     

  

  

  

  

  

 

 9 (c) (ii) 
 

Find the value of p.  
[3 marks]

     

  

  

  

  

  

 
  



14 
 

   

   

 

 10   
 

The curve, C, has equation 
x

x
y

cosh
  

 10 (a)  
 

Show that the x-coordinates of any stationary points of C satisfy the equation x
x


1

tanh  

[3 marks]

     

  

  

  

  

  

  

 10 (b) (i) 
 

Sketch the graphs of y = tanh x and y
x


1

  on the axes below.  

[2 marks]
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 10 (b) (ii) 
 

Hence determine the number of stationary points of the curve C.   
[1 mark]

     

  

  

  

  

 10 (c)  
 

Show that 
d
d

y
y

x
 

2

2 0  at each of the stationary points of the curve C.   

[4 marks]
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 11 (a)  
 

Prove that 
  
 


 


sinh 1 cosh

2coth
1 cosh sinh

   

 

Explicitly state any hyperbolic identities that you use within your proof. 
[4 marks]

     

  

  

  

  

  

  

  

  

 11 (b)  
 

Solve 
 
 


 


sinh 1 cosh

4
1 cosh sinh

 giving your answer in an exact form.  

[2 marks]
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 12   The function f ( ) cosh(i )x x is defined over the domain  :x a x a      , where a

is a positive integer. 

By considering the graph of y = f( )
n

x , find the mean value of  f( )
n

x , when n is a 

positive odd number. 

Fully justify your answer. 

[3 marks]

     

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  



18 
 

   

   

 

 13 
  

 Given that 

 
 
 
  

1 1 1

1 1 1

1 1 1

M  , prove that  

n n n

n n n n

n n n

  

  

  

 
   
  

1 1 1

1 1 1

1 1 1

3 3 3

3 3 3

3 3 3

M   for all n   

[5 marks]
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 14   A particle, P, of mass M is released from rest and moves along a horizontal straight line 
through a point O. When P is at a displacement of x metres from O, moving with a speed 
v ms–1, a force of magnitude  Mx8   acts on the particle directed towards O. A resistive 

force, of magnitude 4 Mv  , also acts on P.  

 14 (a)  
 

Initially P is held at rest at a displacement of 1 metre from O. Describe completely the 
motion of P after it is released. 

Fully justify your answer.  
[8 marks]
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 14 (b)  
 

It is decided to alter the resistive force so that the motion of P is critically damped. 

Determine the magnitude of the resistive force that will produce critically damped motion. 
[4 marks]
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 15   
 

An isolated island is populated by rabbits and foxes. At time t the number of rabbits is x 
and the number of foxes is y. 

It is assumed that: 

 The number of foxes increases at a rate proportional to the number of rabbits. 
When there are 200 rabbits the number of foxes is increasing at a rate of 20 
foxes per unit period of time. 

 If there were no foxes present, the number of rabbits would increase by 120% in 
a unit period of time. 

 When both foxes and rabbits are present the foxes kill rabbits at a rate that is 
equal to 110% of the current number of foxes. 

 At time t = 0, the number of foxes is 20 and the number of rabbits is 80.  

 15 (a) (i) 
 

Construct a mathematical model for the rate of change of the number of rabbits.  
 [9 marks]
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 15 (a) (ii) 
 

Use this model to show that the number of rabbits has doubled after approximately 0.7 
units of time.  

 [1 mark]
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 15 (b)  
 

Suggest one way in which the model that you have used for the rate of change of the 
number of rabbits could be refined.  

[1 mark]

     

  

  

 
 
 

END OF QUESTIONS 
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