General Certificate of Education Advanced Level Examination

MATHEMATICS A

Statistics 2

Paper A

MARKING GUIDE

This guide is intended to be as helpful as possible to teachers by providing concise solutions and indicating how marks should be awarded. There are obviously alternative methods that would also gain full marks.

Method marks (M) are awarded for knowing and using a method.

Accuracy marks (A) can only be awarded when a correct method has been used.

(B) marks are independent of method marks.

Written by Shaun Armstrong, Aidan Burrows & Chris Huffer © Solomon Press

These sheets may be copied for use solely by the purchaser's institute.

S2 Paper A – Marking Guide

1.	(a)	P (X > 5) = 1 - F(5) = 1 - $\frac{1}{64}(80 - 25) = \frac{9}{64}$		M1 A1		
	(b)	$f(x) = F'(x) = \frac{1}{64} (16 - 2x)$	M1 A1			
		$\therefore f(x) = \begin{cases} \frac{1}{32} (8-x), & 0 \le x \le 8, \\ 0, & \text{otherwise.} \end{cases}$	A1	(5)		
2.	(a)	let $P(X = 0) = x$ $\therefore x + 0.8x + (0.8)^2 x + (0.8)^3 x + = 1$	M1 A1			
		$\frac{x}{1-0.8} = 1 \therefore \ x = 0.2$	M1 A1			
	<i>(b)</i>	geometric dist. [Geo(0.2)]	B1			
	(c)	$E(X) = \frac{1}{0.2} = 5$, $Var(X) = \frac{0.8}{0.2^2} = 20$	B2	(7)		
3.	(a)	let $X =$ no. out of 30 who visit advertiser's site $\therefore X \sim B(30, \frac{1}{40})$	B1			
		$P(X \le 1) = \left(\frac{39}{40}\right)^{30} + 30\left(\frac{1}{40}\right)\left(\frac{39}{40}\right)^{29}$ = 0.828 (3sf)	M1 A1 A1			
	(b)	let $Y =$ no. out of 200 who visit advertiser's site $\therefore Y \sim B(200, \frac{1}{40})$				
		using Po approx. $Y \approx \sim Po(5)$	M1 A1			
		$P(Y > 10) = 1 - P(Y \le 10)$	M1			
		$\approx 1 - 0.9863 = 0.0137$ (3sf)	A1	(8)		
4.	(a)	let F = time on French and E = time on English				
		let $A = F + E$ $\therefore A \sim N(55 + 90, 10^2 + 18^2) = \sim N(145, 424)$ $P(A > 120) = P(Z > \frac{120 - 145}{\sqrt{424}})$	MI AI M1			
		= P(Z > -1.21) = 0.88686 = 0.887 (3sf)	A1			
	<i>(b)</i>	P(E > 2F) = P(E - 2F > 0)	M1			
		let $B = E - 2F$:: $B \sim N(90 - 2 \times 55, 18^2 + 4 \times 10^2) = \sim N(-20, 724)$	M1 A1			
		$P(B > 0) = P(Z > \frac{0+20}{\sqrt{724}}) = P(Z > 0.74) = 1 - 0.77035 = 0.230 \text{ (3sf)}$	M1 A1	(9)		

5.	expected freq. males/watched = $\frac{36\times40}{80}$ = 18, males/stranded = $\frac{16\times40}{80}$ = 8	M1 A1		
	giving expected freqs 18 8 14 18 8 14	A1		
	H_0 : no difference in preference of males and females	R1		
	O E $(O-E)$ $\frac{(O-E)^2}{2}$	DI		
	21 18 3 0.5			
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
	15 14 1 0.0714 15 18 -3 0.5			
	10 8 2 0.5			
	15 14 1 0.0714 $\sum_{n=1}^{n} (O-E)^2 = 2.142$	M1 A2		
	$x = 2 \frac{100}{E} - 2.145$ $y = 2 \frac{x^2}{2} \frac{100}{2} = 4.605$	M1 A2		
	$2.143 < 4.605$ \therefore not significant			
	there is no evidence of a difference in preference of males and females	A1	(10)	
6.	(a) Poisson with $\lambda = 4$	B1		
	(b) e.g. more people shopping \therefore probably sell more so λ higher	B1		
	(c) (i) let $X = \text{no. of sales per hour } \therefore X \sim \text{Po}(4)$			
	$P(X > 4) = 1 - P(X \le 4) = 1 - 0.6288 = 0.371$ (3sf) (ii) let $Y = p_0$ of sales per half hour $\therefore Y \ge P_0(2)$	M1 A1 M1		
	P(Y=0) = 0.1353 = 0.135 (3sf)	A1		
	(d) $H_0: \lambda = 4$ $H_1: \lambda > 4$	B1		
	$P(X \ge 9) = 1 - P(X \le 8) = 1 - 0.9786 = 0.0214$	M1 A1	(10)	
	less than 5% \therefore significant, evidence of increase	Al	(10)	
7.	H_0 : B(16, 0.1) is a suitable model H ₀ : B(16, 0.1) is not a suitable model	B 1		
	$P(0) = (0.9)^{16} = 0.1853$	DI		
	$P(1) = 16(0.1)(0.9)^{15} = 0.3294$ $P(2) = \frac{16\times15}{10}(0.1)^{2}(0.0)^{14} = 0.2745$			
	$P(2) = \frac{16 \times 15 \times 14}{2} (0.1)^3 (0.0)^{13} = 0.1423$	M1 A1		
	$P(4) = \frac{16 \times 15 \times 14 \times 13}{3 \times 2} (0.1)^4 (0.9)^{12} = 0.0514$	IVIT AT		
	× 50 to give exp. freqs then freq of $\geq 5 = (50 - \text{sum of others})$	M1		
	∴ exp. freqs are 9.27, 16.47, 13.73, 7.12, 2.57, 0.84	A1		
	combining groups ≥ 3	M1		
	$O \qquad E \qquad (O-E) \qquad \frac{(O-E)}{E}$			
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
	18 13.73 4.27 1.3280			
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
	$\therefore \Sigma \frac{(G-L)}{E} = 8.379$	M1 A1		
	$v = 4 - 1 = 3$, $\chi_{\text{crit}}(5\%) = 7.815$ 8.379 > 7.815 \therefore reject H ₀	MI AI		
	B(16, 0.1) is not a suitable model	A1	(11)	
		Total	(60)	

Performance Record – S2 Paper A

Question no.	1	2	3	4	5	6	7	Total
Topic(s)	c.d.f., p.d.f.	geometric	binomial, Po approx.	linear comb. of Normal r.v.	conting. table	Poisson, hyp. test	goodness of fit, binomial	
Marks	5	7	8	9	10	10	11	60
Student								