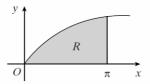
Pure Core 3 Past Paper Questions Pack B

Taken from MAP2

June 2001

- 1 Find $\frac{dy}{dx}$ for each of the following cases
 - (a) $y = e^{2x} \sin 3x$, (3 marks)
 - (b) $y = (2x^2 + 1)^5$. (2 marks)
 - 7 (a) Sketch, on the same diagram, the graphs of $y = \ln x$ and $y = \frac{3}{x}$ for x > 0. (2 marks)
 - (b) (i) Show that the equation $\ln x \frac{3}{x} = 0$ has a root between x = 2 and x = 3. (2 marks)
 - 8 The graph below shows the region R enclosed by the curve $y = x + \sin x$, the x-axis and the line $x = \pi$.



- (a) Find the exact value of the area of the region *R*. (4 marks)
- (b) Show that

(i)
$$\int_0^{\pi} x \sin x \, dx = \pi \,, \qquad (4 \text{ marks})$$

(ii)
$$\int_0^{\pi} \sin^2 x \, dx = \frac{\pi}{2}$$
. (4 marks)

(c) A solid metallic casting is made by rotating the region *R* through 2π radians about the *x*-axis. Find the volume of the solid formed. (3 marks)

January 2002

3 Find the equation of the tangent to the curve $y = \frac{2+x}{\cos x}$ at the point on the curve where x = 0. (6 marks)

Prepared by Toot Hill School Maths Dept April 2006

7 (a) Express
$$\frac{1}{2-x} + \frac{1}{2+x}$$
 in the form $\frac{A}{4-x^2}$ where A is a constant

R

Part of the graph of $y = \frac{1}{\sqrt{4 - x^2}}$ is shown below.

(b) Using the result of part (a), show that the exact volume of the solid formed when the shaded region R is rotated through 2π radians about the *x*-axis is

 $\frac{\pi \ln 3}{4} . \tag{6 marks}$

(c) (i) By using the substitution $x = 2 \sin \theta$ show that

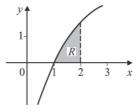
$$\int \frac{\mathrm{d}x}{\sqrt{4-x^2}} = \sin^{-1}\left(\frac{x}{2}\right) + C,$$

where C is a constant.

- (ii) Hence find the area of the shaded region *R*. (2 marks)

June 2002

4 The graph below shows the region *R* enclosed by the curve $y = x - \frac{1}{x}$, the *x*-axis and the line x = 2.



Find the exact volume of the solid formed when the region R is rotated through 2π radians about the x-axis. (6 marks)

(2 marks)

(4 marks)

5 (a) Find $\frac{\mathrm{d}y}{\mathrm{d}x}$ when:

(i)
$$y = x \tan 3x$$
; (3 marks)

(ii)
$$y = \frac{\sin x}{x}$$
. (3 marks)
(b) Show that $\int_0^{\frac{\pi}{8}} x \sin 2x \, dx = \frac{4 - \pi}{16\sqrt{2}}$. (6 marks)

2 (a) Show that

where n is an integer to be found.

(b) Use the substitution $x = u^2$ to show that

$$\int_{0}^{36} \frac{1}{\sqrt{x}(2+\sqrt{x})} \, \mathrm{d}x = \ln m,$$

 $y = \sin^{-1} x.$

 $\int_0^6 \frac{1}{2+u} \mathrm{d}u = \ln n,$

where m is an integer to be found.

5 (a) The diagram shows the graph of

- Write down the coordinates of the end-points A and B. (2 marks)
- (b) Use the mid-ordinate rule, with five strips of equal width, to estimate the value of

$$\int_0^1 \sin^{-1} x \, \mathrm{d}x.$$

Give your answer to three decimal places.

(5 marks)

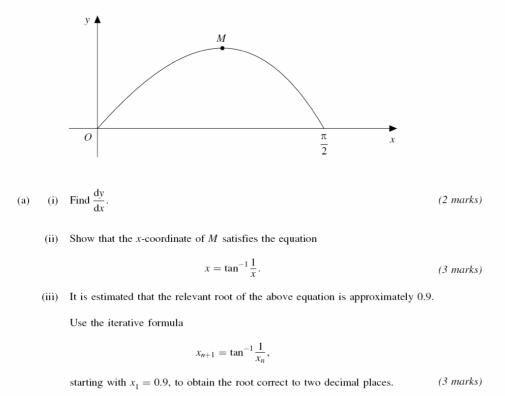
(3 marks)

(5 marks)

7 The diagram shows a sketch of the curve

$$y = x \cos x, \quad 0 \le x \le \frac{\pi}{2}.$$

The maximum point is M.



(b) Find the area of the region bounded by the curve and the *x*-axis. (6 marks)

June 2003

1 Use integration by parts to find

$$\int_{0}^{\frac{1}{2}} x e^{2x} dx. \qquad (5 marks)$$

5 A curve has the equation

$$y = \frac{2x}{\sin x}, \qquad 0 < x < \pi.$$

(a) Find $\frac{dy}{dx}$.

(3 marks)

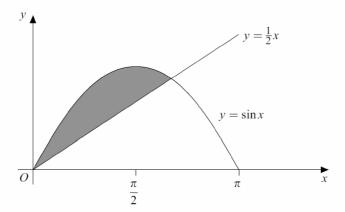
- (b) The point P on the curve has coordinates $\left(\frac{\pi}{2},\pi\right)$.
 - (i) Show that the equation of the tangent to the curve at *P* is y = 2x. (3 marks)
 - (ii) Find the equation of the normal to the curve at *P*, giving your answer in the form y = mx + c. (3 marks)

January 2004

- 4 (a) By using the chain rule, or otherwise, find $\frac{dy}{dx}$ when $y = \ln(x^2 + 9)$. (3 marks)
 - (b) Hence show that $\int_{0}^{3} \frac{x}{x^2 + 9} dx = \frac{1}{2} \ln 2.$ (3 marks)

(c) Show that
$$\int_0^3 \frac{x+1}{x^2+9} dx = \frac{1}{2} \ln 2 + \frac{\pi}{12}$$
. (4 marks)

6 The diagram below shows the graphs of $y = \sin x$ and $y = \frac{1}{2}x$, for $0 \le x \le \pi$.



- (a) Show that the equation $\sin x \frac{1}{2}x = 0$ has a root in the interval $1 \le x \le 2$, where x is measured in radians. (2 marks)
- (b) (i) Given that $f(x) = \sin x \frac{1}{2}x$, find f'(x). (1 mark)
- (c) (i) Show that $\int \sin^2 x \, dx = \frac{1}{2}x \frac{1}{4}\sin 2x + c.$ (2 marks)

(ii) Hence find
$$\int_0^{1.9} \sin^2 x \, dx$$
. (1 mark)

(d) The shaded region enclosed by the graph of $y = \sin x$ and the line $y = \frac{1}{2}x$ is rotated through one revolution about the *x*-axis to form a solid.

Calculate an approximation for the volume of this solid, giving your answer to two significant figures. (5 marks)

June 2004

3 (a) Use integration by parts to evaluate
$$\int_{0}^{\frac{\pi}{2}} x \cos x \, dx \,. \qquad (5 \text{ marks})$$

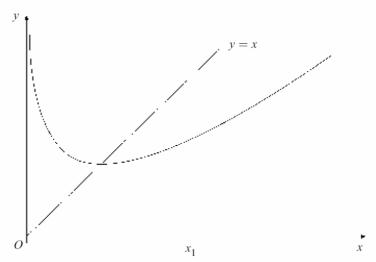
(b) (i) Use the substitution $t = x^2 + 4$ to show that $\int \frac{2x \, dx}{\sqrt{x^2 + 4}} = \int \frac{1}{\sqrt{t}} \, dt$. (2 marks)

(ii) Show that
$$\int_0^2 \frac{2x \, dx}{\sqrt{x^2 + 4}} = 4(\sqrt{2} - 1).$$
 (4 marks)

- 4 (a) (i) Find $\frac{dy}{dx}$ when $y = e^x \sin 2x$. (3 marks)
 - (ii) Hence find the equation of the tangent to the curve $y = e^x \sin 2x$ at the origin. (2 marks)
 - (b) Show that the equation of the normal to the curve $y = e^x \sin 2x$ at the point where $x = \pi$ is

$$2e^{\pi}y + x = \pi. \tag{4 marks}$$

- 5 [Figure 1, printed on the insert, is provided for use in answering this question.]
 - (a) Show, without using a calculator, that the equation $x^3 15 = 0$ has a root in the interval $2 \le x \le 3$. (2 marks)
 - (b) (i) Show that the equation $x = \frac{2x}{3} + \frac{5}{x^2}$ can be rearranged to give the equation $x^3 - 15 = 0$. (2 marks)
 - (ii) Use the iterative formula $x_{n+1} = \frac{2x_n}{3} + \frac{5}{x_n^2}$, starting with $x_1 = 3$, to find the values
 - of x_2 , x_3 and x_4 , giving your answers to six decimal places. (4 marks)
 - (iii) The graphs of $y = \frac{2x}{3} + \frac{5}{x^2}$ and y = x are sketched below.



On **Figure 1**, draw a staircase diagram to illustrate the convergence of the sequence x_1, x_2, x_3, \ldots (2 marks)

(iv) Write down the exact value to which this sequence converges. (1 mark)