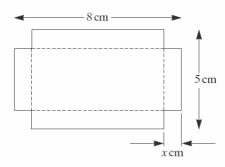
Pure Core 1 Past Paper Questions Pack A

Taken from MAME

January 2001

1	Give	Given that $f(x) = x^3 - 4x^2 - x + 4$,				
	(a)	(2 marks)				
	(b)	factorise $f(x)$ into the product of three linear factors.	(3 marks)			
2	(a)	Express $x^2 - 6x + 7$ in the form $(x + a)^2 + b$, finding the values of <i>a</i> and <i>b</i> .	(2 marks)			
	(b)	Hence, or otherwise, find the range of values of x for which				
		$x^2 - 6x + 7 < 0.$	(3 marks)			

5 Small trays are to be made from rectangular pieces of card. Each piece of card is 8 cm by 5 cm and the tray is formed by removing squares of side x cm from each corner and folding the remaining card along the dashed lines, as shown in the diagram, to form an open-topped box.

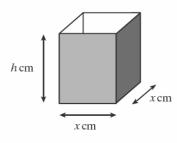


Show that the volume, $V \text{ cm}^3$, of a tray is given by	
2 2	
$V = 4x^3 - 26x^2 + 40x.$	(3 marks)
Find the value of x for which $\frac{\mathrm{d}V}{\mathrm{d}x} = 0.$	(5 marks)
Calculate the greatest possible volume of a tray.	(1 mark)

June 2001

3	(a)	Express $x^2 + 4x - 5$ in the form $(x + a)^2 + b$, finding the values of the constants a	and b. (2 marks)
	(b)	Find the values of x for which $x^2 + 4x - 5 > 0$.	(3 marks)

4 The cubic polynomial $x^3 + ax^2 + bx + 4$, where *a* and *b* are constants, has factors x - 2 and x + 1. Use the factor theorem to find the values of *a* and *b*. (6 marks) 6 An open-topped box has height h cm and a square base of side x cm.



The box has capacity $V \text{ cm}^3$. The area of its **external** surface, consisting of its horizontal base and four vertical faces, is $A \text{ cm}^2$.

(a) Find expressions for V and A in terms of x and h. (3 marks)

(b) It is given that A = 3000.

(i) Show that
$$V = 750x - \frac{1}{4}x^3$$
. (2 marks)

(ii) Find the positive value of x for which $\frac{dV}{dx} = 0$, giving your answer in surd form. (3 marks)

(iii) Hence find the maximum possible value of V, giving your answer in the form p√10, where p is an integer.
[You do not need to show that your answer is a maximum.] (2 marks)

January 2002

3 Solve the simultaneous equations

$$y = 2 - x$$

 $x^2 + 2xy = 3.$ (5 marks)

4 The size of a population, *P*, of birds on an island is modelled by

$$P = 59 + 117t + 57t^2 - t^3.$$

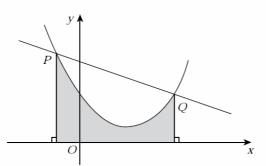
where t is the time in years after 1970.

(a)	Find $\frac{\mathrm{d}P}{\mathrm{d}t}$.	(2 marks	s)
-----	--	----------	----

(b)	(i)	Find the positive value of t for which P has a stationary value.	(3 marks)
-----	-----	--	-----------

- (ii) Determine whether this stationary value is a maximum or a minimum. (2 marks)
- (c) (i) State the year when the model predicts that the population will reach its maximum value. (1 mark)
 - (ii) Determine what the model predicts will happen in the year 2029. (1 mark)

8 The diagram shows the curve $y = x^2 - 4x + 6$, the points P(-1, 11) and Q(4, 6) and the line PQ.



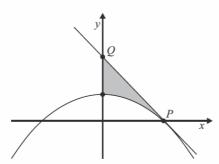
(a)	Show that the length of PQ is $5\sqrt{2}$.	(3 marks)
(b)	Find the equation of the tangent to the curve at Q in the form $y = mx + c$.	(6 marks)
(c)	Find the area of the shaded region in the diagram.	(5 marks)

June 2002

1	Given that $f(x) = x^3 + 4x^2 + x - 6$:				
	(a)	find f(1) and f(-1); (2	2 marks)		
	(b)	factorise $f(x)$ into the product of three linear factors. (4)	4 marks)		
3	Fin	d the values of x and y that satisfy the simultaneous equations			
		$y = 2 - x^2$			
		x + 2y = 1	(5 marks)		
5	(a)	(i) Solve $2x^2 + 8x + 7 = 0$, giving your answers in surd form. (2 marks)		
		(ii) Hence solve $2x^2 + 8x + 7 > 0$. (2 marks)		
	(b)	1	3 marks)		
	(c)	(i) State the minimum value of $2x^2 + 8x + 7$.	(1 mark)		

(ii) State the value of x which gives this minimum value. (1 mark)

7 The diagram shows the graph of $y = 12 - 3x^2$ and the tangent to the curve at the point P(2, 0). The region enclosed by the tangent, the curve and the *y*-axis is shaded.



(a)	Find	$\int_0^2 (12 - 3x^2) \mathrm{d}x.$	(3 marks)
(b)	(i)	Find the gradient of the curve $y = 12 - 3x^2$ at the point <i>P</i> .	(2 marks)
	(ii)	Find the coordinates of the point Q where the tangent at P crosses the y-a	axis. (2 marks)
(c)	Find	the area of the shaded region.	(2 marks)

November 2002

3 It is given that

	$f(x) = x^3 + 3x^2 - 6x - 8.$	
(a)	Find the value of $f(2)$.	(1 mark)
(b)	Use the Factor Theorem to write down a factor of $f(x)$.	(1 mark)
(c)	Hence express $f(x)$ as a product of three linear factors.	(4 marks)

5 (a) Solve the equation

 $2x^2 + 32x + 119 = 0.$

Write your answers in the form $p + q\sqrt{2}$, where p and q are rational numbers. (3 marks)

(b) (i) Express

 $2x^2 + 32x + 119$

in the form

$$2(x+m)^2 + n,$$

where m and n are integers.

(ii) Hence write down the minimum value of

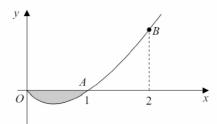
$$2x^2 + 32x + 119.$$
 (1 mark)

(2 marks)

7 The diagram shows the graph of

$$y = x^3 - x, \qquad x \ge 0.$$

The points on the graph for which x = 1 and x = 2 are labelled A and B, respectively.



(a) Find the *y*-coordinate of *B* and hence find the equation of the straight line *AB*, giving your answer in the form

$$ax + by + c = 0. \tag{4 marks}$$

- (b) Find, by integration, the area of the shaded region. (5 marks)
- 8 An office worker can leave home at any time between 6.00 am and 10.00 am each morning. When he leaves home x hours after 6.00 am ($0 \le x \le 4$), his journey time to the office is y minutes, where

$$y = x^4 - 8x^3 + 16x^2 + 8.$$

- (a) Find $\frac{dy}{dx}$. (3 marks) (b) Find the **three** values of x for which $\frac{dy}{dx} = 0$. (4 marks)
- (c) Show that y has a maximum value when x = 2. (3 marks)
- (d) Find the time at which the office worker arrives at the office on a day when his journey time is a maximum. (2 marks)

January 2003

3 The numbers x and y satisfy the simultaneous equations

$$y = 2x + xy = 3$$

1

(a) Show that

 $2x^2 + x - 3 = 0.$ (2 marks)

(3 marks)

(b) Hence solve the simultaneous equations.

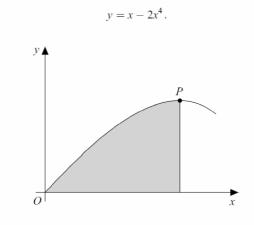
5 The line

$$2x - y + 6 = 0$$

intersects the coordinate axes at two points, A(a, 0) and B(0, b).

(a)	Find the values of a and b.	(2 marks)

- (b) Find the coordinates of M, the midpoint of AB. (2 marks)
- (c) Find the equation of the line through M perpendicular to AB, giving your answer in the form y = mx + c. (4 marks)
- 7 The diagram shows a part of the graph of



	(a)	(i) Find $\frac{dy}{dx}$.	(2 marks)
		(ii) Show that the <i>x</i> -coordinate of the stationary point <i>P</i> is $\frac{1}{2}$.	(2 marks)
		(iii) Find the <i>y</i> -coordinate of <i>P</i> .	(1 mark)
	(b)	(i) Find $\int (x-2x^4) dx$.	(2 marks)
		(ii) Hence find the area of the shaded region.	(3 marks)
8	(a)	Express $\frac{\sqrt{2}+1}{\sqrt{2}-1}$ in the form $a\sqrt{2}+b$, where a and b are integers.	(4 marks)
	(b)	Solve the inequality	

$$\sqrt{2}(x-\sqrt{2}) < x+2\sqrt{2}.$$
 (3 marks)

June 2003

2 The function f is defined for all x by

 $f(x) = x^2 + 6x + 7.$

(a) Express f(x) in the form

 $(x+A)^2 + B,$

where A and B are constants.

(b) Hence, or otherwise, solve the equation

 $\mathbf{f}(x) = \mathbf{0},$

giving your answers in surd form. (3 marks)

(2 marks)

4 The point A has coordinates (2, 3) and O is the origin. (a) Write down the gradient of OA and hence find the equation of the line OA. (2 marks) (b) Show that the line which has equation 4x + 6y = 13: (i) is perpendicular to OA; (2 marks) (ii) passes through the midpoint of OA. (3 marks) (a) Express each of the following as a power of 3: 6 (i) $\sqrt{3}$; (1 mark) (ii) $\frac{3^x}{\sqrt{3}}$. (1 mark) (b) Hence, or otherwise, solve the equation $\frac{3^x}{\sqrt{3}} = \frac{1}{3}.$ (3 marks)

- has equal roots.

- giving your answers in surd form.

November 2003

2

(a) Solve the equation

- (b) Show that the equation

(c) Find the value of p for which the equation

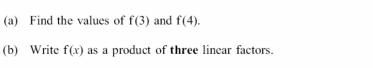
- $2x^2 12x + 21 = 0$
- has no real roots.

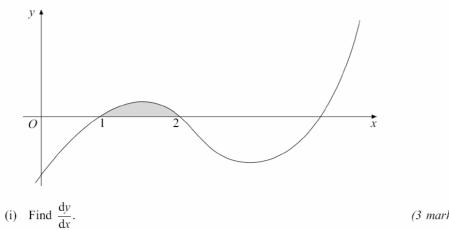
 $2x^2 - 12x + 17 = 0,$

 $2x^2 - 12x + p = 0$

- where x = 3. (iii) Find $\int (x^3 - 7x^2 + 14x - 8) dx$. (iv) Hence find the area of the shaded region enclosed by the graph of y = f(x), for $1 \leq x \leq 2$, and the *x*-axis.

 $y = x^3 - 7x^2 + 14x - 8.$





(ii) State, giving a reason, whether the function f is increasing or decreasing at the point

8 The function f is defined for all values of x by

It is given that f(1) = 0 and f(2) = 0.

(c) The diagram shows the graph of

$$f(x) = x^3 - 7x^2 + 14x - 8.$$

(2 marks)

(2 marks)

(3 marks)

(2 marks)

(3 marks)

(3 marks)

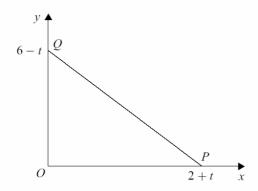
(3 marks)

(2 marks)

(2 marks)

8

4 The diagram shows the points O(0,0), P(2+t,0) and Q(0,6-t), where $0 \le t \le 6$.



(a) The area of the triangle OPQ is A. Show that

 $A = 6 + 2t - \frac{1}{2}t^2.$ (2 marks)

(b)	(i)	Find $\frac{\mathrm{d}A}{\mathrm{d}t}$.		(2 marks)
-----	-----	--	--	-----------

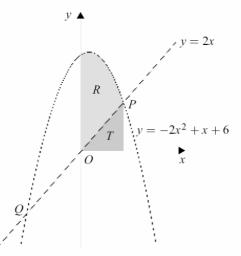
(ii) Show that A has a stationary value when t = 2. (1 mark)

- (c) In the case when t = 2, find:
 - (i) the coordinates of P and Q; (1 mark)
 - (ii) the gradient of the line PQ; (1 mark)
 - (iii) the equation of the line PQ. (2 marks)

7 The diagram shows the graphs of

$$y = 2x$$
 and $y = -2x^2 + x + 6$,

intersecting at two points P and Q.



(a)	Show that <i>P</i> has <i>x</i> -coordinate $\frac{3}{2}$ and find the <i>x</i> -coordinate of <i>Q</i> .	(4 marks)
(b)	Calculate the area of the shaded triangle T .	(2 marks)
(c)	(i) Find $\int (-2x^2 + x + 6) dx$.	(3 marks)
	(ii) Hence find the area of the shaded region R .	(3 marks)

January 2004

(a)

(b)

3 It is given that

- (b) Hence write down the gradient of a line perpendicular to L.
 - (c) Show that the line through A perpendicular to L has equation

$$3x - 2y = 10. (2 marks)$$

(2 marks)

(1 mark)

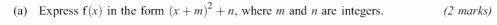
- (d) Hence calculate the coordinates of the point of intersection of the two lines. (3 marks)
- (e) Find the length of the shortest possible connection from A to the pipeline. (2 marks)

y

0

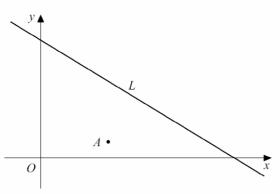
x

7 The diagram shows the graph of y = f(x), where $f(x) = x^2 + 6x + 1$.



- Solve the equation f(x) = 0, giving your answers in the form $p + q\sqrt{2}$, where p and q are (b) integers. (3 marks)
- (c) Solve the inequality f(x) < 0. (1 mark)

5 The diagram shows a line L which represents a pipeline, and a point A which is to be connected to the pipeline by the shortest possible connection.



The equation of the line L is

Find the gradient of the line L.

and A is the point (4, 1).

(a)

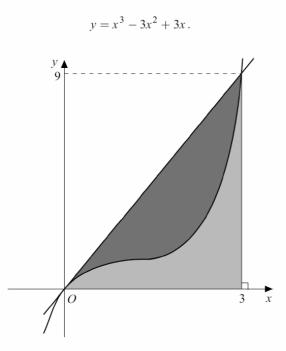
2x + 3y = 24

11

8 The diagram shows the straight line

y = 3x

and the curve



(a)	(i)	Differentiate $x^3 - 3x^2 + 3x$.	(2 marks)
	(ii)	Find the coordinates of the stationary point on the curve	
		$y = x^3 - 3x^2 + 3x.$	(3 marks)
(b)	(i)	Find $\int (x^3 - 3x^2 + 3x) dx$.	(3 marks)

(ii) Show that the areas of the two shaded regions are equal. (3 marks)

June 2004

1 The numbers x and y satisfy the simultaneous equations

$$2x - y = 1$$
$$x^2 + y = 2.$$

(a) Show that

$$x^2 + 2x - 3 = 0. (1 mark)$$

(3 marks)

(b) Hence solve the simultaneous equations.

- 5 (a) Simplify the expression $(\sqrt{3} \sqrt{2})(\sqrt{3} + \sqrt{2})$.
 - (b) It is given that

$$k = \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}$$

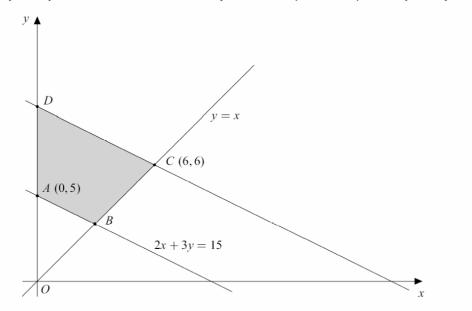
(i)	Express k in the form $p + q\sqrt{6}$, where p and q are integ	ers. (3 marks)
-----	---	----------------

(1 mark)

- (ii) Express $\frac{1}{k}$ in the form $r + s\sqrt{6}$, where r and s are integers. (2 marks)
- 6 A curve is defined by

$$y = x^{3} - 3x^{2} + 6x.$$
(a) (i) Find $\int (x^{3} - 3x^{2} + 6x) dx.$ (2 marks)
(ii) Hence find $\int_{1}^{3} (x^{3} - 3x^{2} + 6x) dx.$ (3 marks)
(b) (i) Find $\frac{dy}{dx}.$ (2 marks)

- (ii) Show that y is an increasing function of x for all values of x. (3 marks)
- 7 The diagram shows a trapezium *ABCD*. The vertices *A* and *C* have coordinates (0, 5) and (6, 6) respectively. The sides *AB* and *BC* have equations 2x + 3y = 15 and y = x respectively.



Find:

(a)	the coordinates of <i>B</i> ;	(2 marks)
(b)	the equation of the side CD , which is parallel to AB ;	(3 marks)
(c)	the coordinates of D, which lies on the y-axis;	(1 mark)
(d)	the area of ABCD.	(4 marks)