ASSESSMENT and
OUALIFICATIONS
ALLIANCE

General Certificate of Education

Mathematics - Pure Core

SPECIMEN UNITS AND
 MARK SCHEMES

General Certificate of Education
Specimen Unit
Advanced Subsidiary Examination
MATHEMATICS

- an 8-page answer book;
- the AQA booklet of formulae and statistical tables.

You must not use a calculator.
Time allowed: 1 hour 30 minutes

Instructions

- Use blue or black ink or ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The Examining Body for this paper is AQA. The Paper Reference is MPC1.
- Answer all questions.
- All necessary working should be shown; otherwise marks for method may be lost.
- Calculators (scientific and graphical) are not permitted in this paper.

Information

- The maximum mark for this paper is 75 .
- Mark allocations are shown in brackets.

Advice

- Unless stated otherwise, formulae may be quoted, without proof, from the booklet.

Answer all questions.

1 The line L has equation

$$
x+y=9
$$

and the curve C has equation

$$
y=x^{2}+3
$$

(a) Sketch on one pair of axes the line L and the curve C. Indicate the coordinates of their points of intersection with the axes.
(b) Show that the x-coordinates of the points of intersection of L and C satisfy the equation

$$
x^{2}+x-6=0
$$

(c) Hence calculate the coordinates of the points of intersection of L and C.

2 The line $A B$ has equation $5 x-2 y=7$.
The point A has coordinates $(1,-1)$ and the point B has coordinates $(3, k)$.
(a) (i) Find the value of k.
(ii) Find the gradient of $A B$.
(b) The point C has coordinates $(-6,-2)$. Show that $A C$ has length $\mathrm{p} \sqrt{2}$, where p is an integer.

3 (a) Given that $(x-1)$ is a factor of $\mathrm{f}(x)$, where

$$
\mathrm{f}(x)=x^{3}-4 x^{2}-k x+10
$$

show that $k=7$.
(b) Divide $\mathrm{f}(x)$ by $(x-1)$ to find a quadratic factor of $\mathrm{f}(x)$.
(c) Write $\mathrm{f}(x)$ as a product of three linear factors.
(d) Calculate the remainder when $\mathrm{f}(x)$ is divided by $(x-2)$.

4 The number x satisifies the equation

$$
x^{2}+m x+16=0
$$

where m is a constant.
Find the values of m for which this equation has:
(a) equal roots;
(b) two distinct real roots;
(c) no real roots.

5 The diagram shows a part of the graph of

$$
y=x-2 x^{4}
$$

(a) (i) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
(ii) Show that the x-coordinate of the stationary point P is $\frac{1}{2}$.
(iii) Find the y-coordinate of P.
(b) Find the area of the shaded region.

6 A circle C has equation

$$
x^{2}+y^{2}-10 x=0
$$

(a) By completing the square, express this equation in the form

$$
(x-a)^{2}+y^{2}=r^{2}
$$

(b) Write down the radius and the coordinates of the centre of the circle C.
(c) Describe a geometrical transformation by which C can be obtained from the circle with equation

$$
x^{2}+y^{2}=r^{2}
$$

(d) The point P, which has coordinates $(9,3)$, lies on the circle C.
(i) Show that the line which passes through P and the centre of C has gradient $\frac{3}{4}$
(ii) Find the equation of the tangent to the circle C at the point P. Give your answer in the form $y=m x+c$.

7 (a) Express $\frac{\sqrt{2}+1}{\sqrt{2}-1}$ in the form $a \sqrt{2}+b$, where a and b are integers.
(b) Solve the inequality

$$
\sqrt{2}(x-\sqrt{2})<x+2 \sqrt{2}
$$

8 A curve has equation

$$
y=x^{4}-8 x^{3}+16 x^{2}+8
$$

(a) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ and $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$.
(b) Find the three values of x for which $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$.
(c) Determine the coordinates of the point at which y has a maximum value.

END OF QUESTIONS

MPC1 Specimen

Question	Solution	Marks	Total	Comments
1(a) (b) (c)	Sketches of L and C Coordinates $(0,9),(9,0)$ indicated Coordinates (0,3) indicated Equating expressions for y $x^{2}+x-6=0$ Solving quadratic $x=-3 \text { or } x=2$ Points are $(-3,12)$ and $(2,7)$	M1 A1 A1 M1 A1 M1 A1 A1A1	3 2 2 4	General shape Accept labels on sketch ditto oe convincingly shown (ag) Two solutions needed A1 if not clearly paired
	Total		9	
2(a)(i) (ii) (b)	$\begin{aligned} & k=4 \\ & \text { Gradient }=\frac{4-(-1)}{3-1} \\ & =\frac{5}{2} \end{aligned}$ Distance formula $\begin{aligned} & A C=\sqrt{50} \\ & =5 \sqrt{2} \end{aligned}$	B1 M1 A1」 M1 A1 A1	2	or use of equation of $A B$ ft wrong value of k stated or used
	Total		6	
3(a)	Use of factor theorem $1-4-k+10=0 \text {, so } k=7$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	2	or complete division convincingly shown (ag)
(b)	Quotient is $x^{2}-3 x-10$	B2	2	B1 if $-3 x$ or -10 correct
(c)	$\mathrm{f}(\mathrm{x})=(x-1)(x+2)(x-5)$	B2	2	B1 if signs wrong
(d)	$\mathrm{f}(2)=-12$ so remainder is -12	$\begin{gathered} \text { B1 } \\ \text { B1 } \end{gathered}$	2	ft wrong value for $\mathrm{f}(2)$
	Total		8	
4(a)	$\begin{aligned} & m^{2}-64=0 \\ & m= \pm 8 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	
(b)	$m^{2}-64>0$ $m<-8$ or $m>8$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	2	
(c)	$\begin{gathered} m^{2}-64<0 \\ -8<m<8 \end{gathered}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	2	
	Total		6	

MPC1 (cont)

Question	Solution	Marks	Total	Comments
$5(\mathrm{a})(\mathrm{i})$ (ii) (iii) (b)	$\begin{aligned} & y^{\prime}=1-8 x^{3} \\ & \mathrm{SP} \Rightarrow y^{\prime}=0 \\ & \Rightarrow x^{3}=\frac{1}{8} \\ & \Rightarrow x=\frac{1}{2} \text { convincingly shown } \\ & y_{P}=\frac{3}{8} \\ & \int y \mathrm{~d} x=\frac{1}{2} x^{2}-\frac{2}{5} x^{5}(+c) \\ & \text { Substitution of } x=\frac{1}{2} \\ & \text { Area }=\frac{1}{8}-\frac{1}{80} \\ & =\frac{9}{80} \end{aligned}$	$\begin{gathered} \text { M1A1 } \\ \text { M1 } \\ \text { A1 } \\ \text { A1 } \\ \text { B1 } \\ \text { M1A1 } \\ \text { m1 } \\ \text { A1 } \\ \text { A1 } \end{gathered}$	2	M1 if at least one term correct PI ag; $2 / 3$ for verification M1 if at least one term correct First A1 awarded if at least one term correct
	Total		11	
6(a) (b) (c) (d)(i) (ii)	Use of $(x-5)^{2}=x^{2}-10 x+25$ $a=5, r=5$ Radius 5 Centre (5, 0) Translation 5 units in positive x direction Use of formula for gradient Grad $\frac{3}{4}$ convincingly shown Grad of tangent is $-\frac{4}{3}$ Tangent is $y-3=-\frac{4}{3}(x-9)$ i.e. $y=-\frac{4}{3} x+15$	M1 A1A1 B1 \checkmark B1 \checkmark M1 A1 \checkmark M1 A1 B1 M1 A1 \checkmark A1 \checkmark	3 2 2 2	Condone RHS $=25$ ft wrong value for a ditto Condone 'transformation' if clarified ft wrong value for a ag ft wrong gradient ft wrong gradient
	Total		12	
7(a) (b)	Rationalising denominator Numerator becomes $2 \sqrt{2}+3$ Denom $=1$, so ans is $2 \sqrt{2}+3$ $\begin{aligned} & \text { LHS }=\sqrt{2} x-2 \\ & \sqrt{2} x-x<2 \sqrt{2}+2 \end{aligned}$ Reasonable attempt at division $x<\frac{2 \sqrt{2}+2}{\sqrt{2}-1}$	$\begin{gathered} \text { M1 } \\ \text { m1A1 } \\ \text { A1 } \sqrt{2} \\ \text { B1 } \\ \text { M1 } \\ \text { m1 } \\ \text { A1 } \end{gathered}$	4 4	ft one small error in numerator Allow $\sqrt{2} x-\sqrt{4}$ for isolating x terms ft error in expanding LHS
	Total		8	

MPC1 (cont)

Question	Solution	Marks	Total	Comments
8(a)	$\begin{aligned} & y^{\prime}=4 x^{3}-24 x^{2}+32 x \\ & y^{\prime \prime}=12 x^{2}-48 x+32 \end{aligned}$	$\begin{gathered} \mathrm{M} 1 \\ \mathrm{~A} 2 \\ \text { m1 } \\ \mathrm{A} 1 \checkmark \end{gathered}$	5	at least one term correct A1 with one error at least one term correct ft numerical error in y^{\prime}
(b)	$y^{\prime}=0 \text { if } x=0$ or if $x^{2}-6 x+8=0$ ie $x=2$ or $x=4$	$\begin{gathered} \text { B1 } \\ \text { M1 } \\ \text { A2 } \end{gathered}$	4	A1 if only one small error
(c)	$y^{\prime \prime}=32,-16,32$	$\begin{gathered} \text { M1 } \\ \text { A1 } \checkmark \end{gathered}$		M1 if at least one correct ft numerical error in $y^{\prime \prime}$
	Relationship between sign of $y^{\prime \prime}$ and maximum/minimum $\text { Max at } x=2$ $y=24$	M1 A1 A1	5	
	Total		15	
	TOTAL		75	

MATHEMATICS

MPC2

Unit Pure Core 2

In addition to this paper you will require:

- an 8-page answer book.
- the AQA booklet of formulae and statistical tables.

You may use a graphics calculator.
Time allowed: 1 hour 30 minutes

Instructions

- Use blue or black ink or ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The Examining Body for this paper is AQA. The Paper Reference is MPC2.
- Answer all questions.
- All necessary working should be shown; otherwise marks for method may be lost.
- The final answer to questions requiring the use of tables or calculators should normally be given to three significant figures.

Information

- The maximum mark for this paper is 75 .
- Mark allocations are shown in brackets.

Advice

- Unless stated otherwise, formulae may be quoted, without proof, from the booklet.

Answer all questions.

1 The diagram shows triangle $A B C$.

The lengths of $A B$ and $A C$ are 7 cm and 8 cm respectively. The size of angle $B A C$ is 60°. Calculate the length of $B C$, giving your answer to 3 significant figures.

2 The diagrams show a square of side 6 cm and a sector of a circle of radius 6 cm and angle θ radians.

The area of the square is three times the area of the sector.
(a) Show that $\theta=\frac{2}{3}$.
(b) Show that the perimeter of the square is $1 \frac{1}{2}$ times the perimeter of the sector.

3 The nth term of an arithmetic sequence is u_{n}, where

$$
u_{n}=10+0.5 n
$$

(a) Find the value of u_{1} and the value of u_{2}.
(b) Write down the common difference of the arithmetic sequence.
(c) Find the value of n for which $u_{n}=25$.
(d) Evaluate $\sum_{n=1}^{30} u_{n}$.

4 (a) Given that

$$
\log _{a} x=\log _{a} 5+2 \log _{a} 3
$$

where a is a positive constant, show that $x=45$.
(b) (i) Write down the value of $\log _{2} 2$.
(ii) Given that

$$
\log _{2} y=\log _{4} 2
$$

find the value of y.

5 The curve C is defined by the equation

$$
y=2 x^{2} \sqrt{x}+\frac{1}{x^{4}} \quad \text { for } x>0
$$

(a) Write $x^{2} \sqrt{x}$ in the form x^{k}, where k is a fraction.
(b) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
(c) Find an equation of the tangent to the curve C at the point on the curve where $x=1$.
(4 marks)
(d) (i) Find $\frac{d^{2} y}{d x^{2}}$.
(ii) Hence deduce that the curve C has no maximum points.

6 The amount of money which Pauline pays into an insurance scheme is recorded each year. The amount which Pauline pays in during the nth year is $£ A_{n}$. The first three values of A_{n} are given by:

$$
A_{1}=800 \quad A_{2}=650 \quad A_{3}=530
$$

The recorded amounts may be modelled by a law of the form

$$
A_{n+1}=p A_{n}+q
$$

where p and q are constants.
(a) Find the value of p and the value of q.
(b) Given that the amounts converge to a limiting value, $£ V$, find an equation for V and hence find the value of V.
(3 marks)

7 (a) Express $\frac{x^{5}+1}{x^{2}}$ in the form $x^{p}+x^{q}$, where p and q are integers.
(b) Hence find the exact value of $\int_{1}^{\frac{3}{2}}\left(\frac{x^{5}+1}{x^{2}}\right) \mathrm{d} x$.

8 The angle θ radians, where $0 \leq \theta \leq 2 \pi$, satisfies the equation

$$
3 \tan \theta=2 \cos \theta
$$

(a) Show that $\quad 3 \sin \theta=2 \cos ^{2} \theta$
(b) Hence use an appropriate identity to show that

$$
2 \sin ^{2} \theta+3 \sin \theta-2=0
$$

(c) (i) Solve the quadratic equation in part (b). Hence explain why the only possible value of $\sin \theta$ which will satisfy it is $\frac{1}{2}$.
(ii) Find the values of θ for which $\sin \theta=\frac{1}{2}$ and $0 \leqslant \theta \leqslant 2 \pi$.
(d) Hence write down the solutions of the equation

$$
3 \tan 2 x=2 \cos 2 x
$$

that lie in the interval $0^{\circ} \leqslant x \leqslant 180^{\circ}$.

9 The diagram shows a sketch of the curve with equation $y=4^{x}$.

(a) (i) Use the trapezium rule with five ordinates (four strips) to find an approximation

$$
\text { for } \int_{0}^{2} 4^{x} \mathrm{~d} x
$$

(ii) By considering the graph of $y=4^{x}$, explain with the aid of a diagram whether your approximation will be an overestimate or an underestimate of the true value for $\int_{0}^{2} 4^{x} \mathrm{~d} x$.
(2 marks)
(b) Describe the single transformation by which the curve with equation $y=5 \times 4^{x}$ can be obtained from the curve with equation $y=4^{x}$.
(c) Sketch the curve with equation $y=4^{-x}$.
(d) The two curves $y=5 \times 4^{x}$ and $y=4^{-x}$ intersect at the point P.
(i) Show that the x-coordinate of the point P is a root of the equation $4^{2 x}=0.2$
(ii) Solve this equation to find the x-coordinate of the point P. Give your answer to 5 significant figures.

END OF QUESTIONS

MPC2 Specimen

\begin{tabular}{|c|c|c|c|c|}
\hline Question \& Solution \& Marks \& Total \& Comments \\
\hline 1 \& \[
\begin{aligned}
B C^{2} \& =7^{2}+8^{2}-2 \times 7 \times 8 \times \cos 60^{\circ} \\
\& =49+64-56 \\
\& =57 \Rightarrow B C=\sqrt{57}=7.55 \text { to } 3 \mathrm{sf}
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { M1 } \\
\& \text { m1 } \\
\& \text { A1 }
\end{aligned}
\] \& 3 \& \\
\hline \& Total \& \& 3 \& \\
\hline 2(a) \& \begin{tabular}{l}
\(\{\) Area of square \(\}=3 \times \frac{1}{2} 6^{2} \theta\)
\[
6^{2}=\frac{3}{2} 6^{2} \theta \Rightarrow \theta=\frac{2}{3}
\] \\
Arc length \(=6 \theta\) \\
Perimeter of sector \(=(12+6 \theta)\)
\[
=1 \frac{1}{2}\left(12+6 \times \frac{2}{3}\right)=24
\] \\
\(=\) perimeter of square
\end{tabular} \& \begin{tabular}{l}
M1 \\
A1 \\
B1 \\
M1 \\
A1
\end{tabular} \& 2

3 \& Use of $\frac{1}{2} r^{2} \theta \quad \mathrm{PI}$ ag ag

\hline \& Total \& \& 5 \&

\hline 3(a) \& $u_{1}=10.5 ; \quad u_{2}=11$ \& B1B1 \& 2 \& sc B1 for 10, 10.5

\hline (b) \& Common difference is 0.5 \& B1 \& 1 \&

\hline (c) \& $$
\begin{aligned}
& 10+0.5 n=25 \Rightarrow 0.5 n=25-10 \\
& \Rightarrow n=30
\end{aligned}
$$ \& \[

$$
\begin{gathered}
\text { M1 } \\
\text { A1 }
\end{gathered}
$$
\] \& 2 \&

\hline (d) \& \[
$$
\begin{aligned}
\sum_{n=1}^{30} u_{n} & =\text { sum of AP with } n=30 \\
& =\frac{30}{2}(10.5+25) \\
& =532.5
\end{aligned}
$$

\] \& | M1 |
| :--- |
| m1 |
| A1 | \& 3 \& oe

\hline \& Total \& \& 8 \&

\hline \multirow[t]{2}{*}{4(a)} \& $$
\begin{gathered}
\log _{a} x=\log _{a} 5+\log _{a} 3^{2} \\
\log _{a} x=\log _{a}\left[5 \times 3^{2}\right] \\
\quad \Rightarrow x=45
\end{gathered}
$$ \& \[

$$
\begin{aligned}
& \text { M1 } \\
& \text { m1 }
\end{aligned}
$$
\] \& \& PI

\hline \& \& A1 \& 3 \& ag convincingly found

\hline \multirow[t]{3}{*}{$$
\underset{\text { (ii) }}{(\text { (b) }}
$$} \& $\log _{2} 2=1$ \& B1 \& 1 \&

\hline \& $$
\left\{\log _{2} y=\right\} \log _{4} 2=0.5
$$ \& B1 \& \&

\hline \& $\Rightarrow y=2^{\overline{2}}=\sqrt{2}$ \& B1 \& 2 \&

\hline \& Total \& \& 6 \&

\hline
\end{tabular}

MPC2 (cont)

MPC2 (cont)

\begin{tabular}{|c|c|c|c|c|}
\hline Question \& Solution \& Marks \& Total \& Comments \\
\hline \begin{tabular}{l}
8(a) \\
(b)
(c)(i) \\
(ii) \\
(d)
\end{tabular} \& \begin{tabular}{l}
\[
\begin{aligned}
\& 3 \frac{\sin \theta}{\cos \theta}=2 \cos \theta \Rightarrow 3 \sin \theta=2 \cos ^{2} \theta \\
\& \sin ^{2} \theta+\cos ^{2} \theta=1 \\
\& 3 \sin \theta=2\left(1-\sin ^{2} \theta\right) \\
\& 2 \sin ^{2} \theta+3 \sin \theta-2=0
\end{aligned}
\] \\
Attempt to solve for \(\sin \theta\)
\[
(2 \sin \theta-1)(\sin \theta+2)=0
\] \\
Since \(-1 \leq \sin \theta \leq 1\), the only possible value for \(\sin \theta\) is \(\frac{1}{2}\)
\[
\theta=0.5235 \ldots
\]
\[
\theta=2.6179 \ldots
\]
\[
3 \tan 2 x=2 \cos 2 x \Rightarrow \sin 2 x=\frac{1}{2}
\]
\[
2 x=30^{\circ} \text { or } 150^{\circ}
\]
\[
\Rightarrow x=15^{\circ}
\] \\
or \(x=75^{\circ}\)
\end{tabular} \& \begin{tabular}{l}
B1 \\
M1 \\
A1 \\
A1 \\
M1 \\
A1 \\
A1 \\
B1 \\
B1 \(\checkmark\) \\
M1 \\
A1 \\
A1
\end{tabular} \& 1
3
3

2

3 \& | ag convincingly found oe seen |
| :--- |
| ag convincingly found M0 for verification oe eg use of the formula. |
| ag convincingly found and explained |
| In (ii) accept 3 sf and in terms of π, ft on their $0.5235 \ldots$ |
| Links with previous parts |

\hline \& Total \& \& 12 \&

\hline | 9(a)(i) |
| :--- |
| (ii) |
| (b) |
| (c) |
| (d)(i) |
| (ii) | \& | $h=0.5$ |
| :--- |
| Integral $=h / 2\{\ldots \ldots\}$ |
| $\{\ldots\}=$. |
| $\mathrm{f}(0)+2\left[\mathrm{f}\left(\frac{1}{2}\right)+\mathrm{f}(1)+\mathrm{f}\left(1 \frac{1}{2}\right)\right]+\mathrm{f}(2)$ |
| $\{\ldots\}=.1+2[2+4+8]+16$ |
| Integral $=11.25$ |
| Relevant trapezia drawn on a copy of given graph. |
| Overestimate |
| Stretch in y-direction |
| scale factor 5 |
| Sketch showing the reflection of the graph of the given curve in the y-axis $\begin{aligned} & 5\left(4^{x}\right)=4^{-x} \Rightarrow 5\left(4^{x}\right) \times 4^{x}=1 \\ & \Rightarrow 5 \times 4^{2 x}=1 \Rightarrow 4^{2 x}=0.2 \\ & \ln 4^{2 x}=\ln 0.2 \\ & 2 x=\frac{\ln 0.2}{\ln 4} \\ & x=-0.58048(20 \ldots) \end{aligned}$ | \& | B1 |
| :--- |
| M1 |
| A1 |
| A1 |
| M1 |
| A1 |
| M1 |
| A1 |
| B1 |
| M1 |
| A1 |
| M1 |
| A1 |
| A1 | \& | 4 |
| :--- |
| 2 |
| 2 |
| 1 |
| 2 |
| 3 | \& | ag convincingly found oe using base 10 |
| :--- |
| Need 5sf or better |

\hline \& Total \& \& 14 \&

\hline \& TOTAL \& \& 75 \&

\hline
\end{tabular}

General Certificate of Education
 Specimen Unit
 Advanced Level Examination

MATHEMATICS

MPC3

Unit Pure Core 3

In addition to this paper you will require:

- an 8-page answer book;
- the AQA booklet of formulae and statistical tables;
- an insert for use in Question 5 (enclosed).

You may use a graphics calculator.
Time allowed: 1 hour 30 minutes

Instructions

- Use blue or black ink or ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The Examining Body for this paper is AQA. The Paper Reference is MPC3.
- Answer all questions.
- All necessary working should be shown; otherwise marks for method may be lost.
- The final answer to questions requiring the use of tables or calculators should normally be given to three significant figures.

Information

- The maximum mark for this paper is 75 .
- Mark allocations are shown in brackets.

Advice

- Unless stated otherwise, formulae may be quoted, without proof, from the booklet.

Answer all questions.

1 Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ when:
(a) $y=x \tan 3 x$;
(b) $y=\frac{\sin x}{x}$.

2 A curve has equation $y=\frac{x}{\sqrt{\left(x^{3}+2\right)}}$. The region R is bounded by the curve, the x-axis from the origin to the point $(1,0)$ and the line $x=1$.
(a) Explain why R lies entirely above the x-axis.
(b) Use Simpson's Rule with five ordinates (four strips) to find an approximation for the area of R, giving your answer to 3 significant figures.
(c) Find the exact value of the volume of the solid formed when R is rotated through 2π radians about the x-axis.

3 A curve has equation $y=\mathrm{e}^{2 x}-4 x$.
(a) Show that the x-coordinate of the stationary point on the curve is $\frac{1}{2} \ln 2$. Find the corresponding y-coordinate in the form $a+b \ln 2$, where a and b are integers to be determined.
(b) Find an expression for $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ and hence determine the nature of the stationary point.
(c) Show that the area of the region enclosed by the curve, the x-axis and the lines $x=0$ and $x=1$ is $\frac{1}{2}\left(\mathrm{e}^{2}-5\right)$.
(5 marks)

4 (a) Describe a sequence of geometrical transformations that maps the graph of $y=\sin x$ onto the graph of $y=3+\sin 2 x$.
(b) Find the gradient of the curve with equation $y=3+\sin 2 x$ at the point where $x=\frac{\pi}{6}$.
(3 marks)
(c) (i) Find $\int x \sin 2 x d x$.
(4 marks)
(ii) Hence show that $\int_{0}^{\frac{\pi}{2}} x(3+\sin 2 x) \mathrm{d} x=\frac{\pi(3 \pi+2)}{8}$.

5 [An insert is provided for use in answering this question.]
The curve with equation $y=x^{3}-4 x^{2}-4$ intersects the x-axis at the point A where $x=\alpha$.
(a) Show that α lies between 4 and 5 .
(b) Show that the equation $x^{3}-4 x^{2}-4=0$ can be rearranged in the form $x=4+\frac{4}{x^{2}}$.
(2 marks)
(c) (i) Use the iterative formula $x_{n+1}=4+\frac{4}{x_{n}^{2}}$ with $x_{1}=5$ to find x_{3}, giving your answer to three significant figures.
(ii) The sketch shows the graphs of $y=4+\frac{4}{x^{2}}$ and $y=x$ and the position of x_{1}. On the insert provided, draw a cobweb or staircase diagram to show how convergence takes place, indicating the positions of x_{2} and x_{3}.

Turn over

6 Solve the equation

$$
4 \cot ^{2} x+12 \operatorname{cosec} x+1=0
$$

giving all values of x to the nearest degree in the interval $0 \leqslant x \leqslant 360^{\circ}$.
(7 marks)

7 The functions f and g are defined with their respective domains by

$$
\begin{aligned}
& \mathrm{f}(x)=\frac{4}{3+x}, x>0 \\
& \mathrm{~g}(x)=9-2 x^{2}, \quad x \in 3
\end{aligned}
$$

(a) Find $\mathrm{fg}(x)$, giving your answer in its simplest form.
(b) (i) Solve the equation $\mathrm{g}(x)=1$.
(ii) Explain why the function g does not have an inverse.
(c) Solve the equation $|\mathrm{g}(x)|=1$.
(d) The inverse of f is f^{-1}.
(i) Find $\mathrm{f}^{-1}(x)$.
(ii) Solve the equation $\mathrm{f}^{-1}(x)=\mathrm{f}(x)$.

END OF QUESTIONS

| Surname | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Centre Number | | | | | | Other Names | | | |
| Candidate Number | | | | | | | | | |
| Candate Signature | | | | | | | | | |

General Certificate of Education
Specimen Unit
Advanced Level Examination

MATHEMATICS
MPC3
Unit Pure Core 3

Insert for use in answering Question 5.
Fill in the boxes at the top of this page.
Fasten this insert securely to your answer book.

aSSESSMENTAOA
oualifications
MPC3 Specimen

\begin{tabular}{|c|c|c|c|c|}
\hline Question \& Solution \& Marks \& Total \& Comments

\hline \multirow[t]{2}{*}{(b)} \& $3 x \sec ^{2} 3 x+\tan 3 x$
$$
\frac{x \cos x-\sin x}{x^{2}}
$$ \& $$
\begin{aligned}
& \hline \text { M1 } \\
& \text { M1 } \\
& \text { A1 } \\
& \text { M1 } \\
& \text { B1 } \\
& \text { A1 } \\
& \hline
\end{aligned}
$$ \& 3

3 \& | Product Rule $\sec ^{2}$ Correct Quotient Rule $\frac{\mathrm{d}(\sin x)}{\mathrm{d} x}=\cos x$ |
| :--- |
| Correct |

\hline \& Total \& \& 6 \&

\hline 2(a) \& $y \geq 0$ when $x \geq 0$ so R is above x-axis \& E1 \& 1 \&

\hline \multirow[t]{2}{*}{b)} \& "Outside multiplier" $\quad \frac{1}{3} \times 0.25$

\[
$$
\begin{aligned}
& \frac{1}{3} \times 0.25\{y(0)+y(1)+ \\
& \quad 4[y(0.25)+y(0.75)]+2 y(0.5)\}
\end{aligned}
$$

\] \& | B1 |
| :--- |
| M1 | \& \& \[

$$
\begin{aligned}
& y(0)=0 ; \quad y(0.25)=0.17609 ; \\
& y(0.5)=0.34300 ; \quad y(0.75)=0.48193 ; \\
& y(1)=0.57735
\end{aligned}
$$
\]

\hline \& $$
\begin{aligned}
& =0.3246193 \ldots \\
& =0.325 \text { to } 3 \mathrm{sf}
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \text { A1 } \\
& \text { A1 }
\end{aligned}
$$
\] \& 4 \& Correct to at least 2 sf

\hline \multirow[t]{3}{*}{(c)} \& \[
$$
\begin{aligned}
& V=\pi \int_{0}^{1} \frac{x^{2}}{x^{3}+2} \mathrm{~d} x \\
& k \ln \left(x^{3}+2\right)
\end{aligned}
$$

\] \& | B1 |
| :--- |
| M1 | \& \&

\hline \& $\frac{1}{3} \ln \left(x^{3}+2\right)$ \& A1 \& \& Integration correct

\hline \& $$
\frac{\pi}{3}(\ln 3-\ln 2)
$$ \& \[

$$
\begin{aligned}
& \text { m1 } \\
& \text { A1 }
\end{aligned}
$$
\] \& 5 \& Correct use of limits

\hline \& Total \& \& 10 \&

\hline
\end{tabular}

MPC3 (cont)

MPC3 (cont)

Specimen Unit

MATHEMATICS

MPC4
Unit Pure Core 4

In addition to this paper you will require:

- an 8-page answer book;
- the AQA booklet of formulae and statistical tables.

You may use a graphics calculator.
Time allowed: 1 hour 30 minutes

Instructions

- Use blue or black ink or ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The Examining Body for this paper is AQA. The Paper Reference is MPC4.
- Answer all questions.
- All necessary working should be shown; otherwise marks for method may be lost.
- The final answer to questions requiring the use of tables or calculators should normally be given to three significant figures.

Information

- The maximum mark for this paper is 75 .
- Mark allocations are shown in brackets.

Advice

- Unless stated otherwise, formulae may be quoted, without proof, from the booklet.

1 The polynomials $\mathrm{f}(x)$ and $\mathrm{g}(x)$ are defined by

$$
\begin{aligned}
& \mathrm{f}(x)=4 x^{2}+4 x-3 \\
& \mathrm{~g}(x)=4 x^{3}-x
\end{aligned}
$$

(a) By considering $\mathrm{f}\left(\frac{1}{2}\right)$ and $\mathrm{g}\left(\frac{1}{2}\right)$, or otherwise, show that $\mathrm{f}(x)$ and $\mathrm{g}(x)$ have a common linear factor.
(b) Hence write $\frac{\mathrm{f}(x)}{\mathrm{g}(x)}$ as a simplified algebraic fraction.

2 (a) Obtain the binomial expansion of $(1+x)^{\frac{1}{2}}$ as far as the term in x^{2}.
(b) (i) Hence, or otherwise, find the series expansion of $(4+2 x)^{\frac{1}{2}}$ as far as the term in x^{2}.
(ii) Find the range of values of x for which this expansion is valid.
(1 mark)

3 (a) Express $4 \sin \theta-3 \cos \theta$ in the form $R \sin (\theta-\alpha)$, where R is a positive constant and $0^{\circ}<\alpha<90^{\circ}$.

Give the value of α to the nearest 0.1°.
(b) Hence find the solutions in the interval $0^{\circ}<\theta<360^{\circ}$ of the equation

$$
4 \sin \theta-3 \cos \theta=2
$$

Give each solution to the nearest degree.

4 (a) Express $4 \sin ^{2} x$ in the form $a+b \cos 2 x$, where a and b are constants.
(b) Find the value of $\int_{0}^{\frac{\pi}{12}} 4 \sin ^{2} x d x$.
(4 marks)
(c) Hence find the volume generated when the part of the graph of

$$
y=2 \sin x
$$

between $x=0$ and $x=\frac{\pi}{12}$ is rotated through one revolution about the x-axis.

5 The population P of a particular species is modelled by the formula

$$
P=\mathrm{Ae}^{-k t}
$$

where t is the time in years measured from a date when $P=5000$.
(a) Write down the value of A.
(b) Given that $P=3500$ when $t=10$, show that $k \approx 0.03567$.
(c) Find the value of the population 20 years after the initial date.

6 (a) Solve the differential equation

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=\frac{10-x}{5}
$$

given that $x=1$ when $t=0$.
(b) Find the value of t for which $x=2$, giving your answer to three decimal places

7 (a) Express

$$
\frac{25 x+1}{(2 x-1)(x+1)^{2}}
$$

in the form

$$
\frac{A}{2 x-1}+\frac{B}{x+1}+\frac{C}{(x+1)^{2}}
$$

(b) Hence find the value of

$$
\int_{1}^{2} \frac{25 x+1}{(2 x-1)(x+1)^{2}} \mathrm{~d} x
$$

giving your answer in the form $p+q \ln 2$.
8 A curve is defined by the parametric equations

$$
x=t^{2}+\frac{2}{t}, y=t^{2}-\frac{2}{t}, t \neq 0
$$

(a) (i) Express $x+y$ and $x-y$ in terms of t.
(ii) Hence verify that the cartesian equation of the curve is

$$
(x+y)(x-y)^{2}=32
$$

(b) (i) By finding $\frac{\mathrm{d} x}{\mathrm{~d} t}$ and $\frac{\mathrm{d} y}{\mathrm{~d} t}$, calculate the value of $\frac{\mathrm{d} y}{\mathrm{~d} x}$ at the point for which $t=2$.
(ii) Hence find the equation of the tangent to the curve at this point. Give your answer in the form $a x+b y=c$, where a, b and c are integers.

9 The line l_{1} has equation $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}3 \\ -2 \\ 1\end{array}\right]+t\left[\begin{array}{l}4 \\ 4 \\ 3\end{array}\right]$.

The line l_{2} has equation $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}9 \\ -4 \\ 0\end{array}\right]+s\left[\begin{array}{c}-1 \\ 3 \\ 2\end{array}\right]$.
(a) Show that the lines l_{1} and l_{2} intersect and find the coordinates of their point of intersection.
(b) The point P on the line l_{1} is where $t=p$, and the poin Q has coordinates $(5,9,11)$.
(i) Show that

$$
\overrightarrow{Q P} \cdot\left[\begin{array}{l}
4 \\
4 \\
3
\end{array}\right]=41 p-82
$$

(ii) Hence find the coordinates of the foot of the perpendicular from the point Q to the line l_{1}.

END OF QUESTIONS

MPC4 Specimen

\begin{tabular}{|c|c|c|c|c|}
\hline Question \& Solution \& Marks \& Total \& Comments \\
\hline 1(a)
(b) \& \begin{tabular}{l}
\[
\mathrm{f}\left(\frac{1}{2}\right)=0, \mathrm{~g}\left(\frac{1}{2}\right)=0
\] \\
So \(2 x-1\) is a common factor
\[
\begin{aligned}
\& \mathrm{f}(x)=(2 x-1)(2 x+3) \\
\& \mathrm{g}(x)=(2 x-1)\left(2 x^{2}+x\right)
\end{aligned}
\] \\
So \(\frac{\mathrm{f}(x)}{\mathrm{g}(x)}=\frac{2 x+3}{2 x^{2}+x}\)
\end{tabular} \& \[
\begin{gathered}
\hline \text { M1A1 } \\
\text { A1 } \\
\text { B1 } \\
\text { B1 } \\
\text { B1 }
\end{gathered}
\] \& 3 \& \begin{tabular}{l}
or other complete method or \(x-\frac{1}{2}\) \\
ft numerical error
\end{tabular} \\
\hline \& Total \& \& 6 \& \\
\hline \[
\begin{array}{r}
\hline \text { 2(a) } \\
\text { (b)(i) } \\
\\
\text { (ii) } \\
\hline
\end{array}
\] \& \begin{tabular}{l}
\[
\begin{aligned}
\& (1+x)^{1 / 2}=1+\frac{1}{2} x-\frac{1}{8} x^{2}+\ldots \\
\& (4+2 x)^{1 / 2}=2\left(1+\frac{1}{2} x\right)^{1 / 2} \\
\& \ldots=2+\frac{1}{2} x-\frac{1}{16} x^{2}+\ldots
\end{aligned}
\] \\
Valid if \(-2<x<2\)
\end{tabular} \& \[
\begin{gathered}
\text { M1A1 } \\
\text { B1 } \\
\text { M1 } \\
\text { A1 } \\
\text { B1 }
\end{gathered}
\] \& 2

3

1 \& | M1 if two terms correct |
| :--- |
| Reasonable attempt |

\hline \& Total \& \& 6 \&

\hline | 3(a) |
| :--- |
| (b) | \& | $R=5$ |
| :--- |
| $\cos \alpha$ or $\sin \alpha=\frac{4}{5}$ or $\frac{3}{5}$ $\begin{aligned} & \alpha \approx 36.9^{\circ} \\ & \sin (\theta-\alpha)=\frac{2}{5} \end{aligned}$ |
| One solution is $\alpha+\sin ^{-1} \frac{2}{5}$ |
| Solutions 60° and 193° | \& \[

$$
\begin{gathered}
\hline \text { B1 } \\
\\
\text { M1 } \\
\text { A1 } \\
\text { M1 } \\
\text { m1 } \\
\text { A1A1 } \\
\hline
\end{gathered}
$$

\] \& | 3 |
| :--- |
| 4 | \& | PI |
| :--- |
| Accept awrt 60 or 61, and awrt 193 |

\hline \& Total \& \& 7 \&

\hline | 4(a) |
| :--- |
| (b) |
| (c) | \& \[

$$
\begin{aligned}
& \text { Use of } \cos 2 A \equiv 1-2 \sin ^{2} A \\
& 4 \sin ^{2} x \equiv 2-2 \cos 2 x \\
& \int \ldots \mathrm{~d} x=2 x-\sin 2 x(+c) \\
& \text { Use of } \sin \frac{\pi}{6}=\frac{1}{2} \\
& \frac{\pi / 2}{1} \ldots \mathrm{~d} x=\frac{\pi}{6}-\frac{1}{2} \\
& \int_{0} \\
& (2 \sin x)^{2}=4 \sin ^{2} x \\
& \text { So volume is } \pi\left(\frac{\pi}{6}-\frac{1}{2}\right)
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
\text { M1 } \\
\text { A1 } \\
\text { M1A1 } \\
\text { m1 } \\
\\
\text { A1 } \\
\text { B1 } \\
\text { B1 }
\end{gathered}
$$

\] \& | 2 |
| :--- |
| 4 |
| 2 | \& | PI |
| :--- |
| M1 if at least one term correct |
| Accept 0.0236 |
| Accept 0.0741 |
| ft one error |

\hline \& Total \& \& 8 \&

\hline | 5(a) |
| :--- |
| (b) |
| (c) | \& \[

$$
\begin{aligned}
& A=5000 \\
& 3500=5000 \mathrm{e}^{-10 k} \\
& \ln 0.7=-10 k \\
& k=-\frac{1}{10} \ln 0.7 \\
& \ldots \approx 0.03567 \\
& P=5000(0.7)^{2} \text { or } 5000 \mathrm{e}^{-0.7134} \\
& \ldots=2450 \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
\text { B1 } \\
\text { B1 } \checkmark \\
\text { M1 } \\
\text { A1 } \checkmark \\
\\
\text { A1 } \\
\text { M1A1 } \\
\text { A1 }
\end{gathered}
$$

\] \& | 1 |
| :--- |
| 4 |
| 3 | \& oe; ft wrong value for A oe ft one numerical error convincingly shown (ag) M1 if only one small error Accept awrt 2450

\hline \multicolumn{2}{|l|}{- Total} \& \& 8 \&

\hline
\end{tabular}

MPC4 (cont)

\begin{tabular}{|c|c|c|c|c|}
\hline Question \& Solution \& Marks \& Total \& Comments \\
\hline \begin{tabular}{l}
\[
6(a)
\] \\
(b)
\end{tabular} \& \[
\begin{aligned}
\& \text { Attempt to separate variables } \\
\& \int \frac{\mathrm{d} x}{10-x} \mathrm{~d} x= \pm k \ln (10-x)(+c) \\
\& t=-5 \ln (10-x)+c \\
\& c=5 \ln 9 \\
\& x=2 \Rightarrow t=5 \ln 9-5 \ln 8 \\
\& \ldots \approx 0.589
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { M1 } \\
\& \text { m1 } \\
\& \\
\& \text { A1 } \\
\& \text { A1 } \\
\& \text { M1 } \\
\& \text { A1 } \\
\& \hline
\end{aligned}
\] \& \[
2
\] \& \\
\hline \& Total \& \& 6 \& \\
\hline \begin{tabular}{l}
\[
7(\mathrm{a})
\] \\
(b)
\end{tabular} \& \[
\begin{aligned}
\& 25 x+1 \equiv A(x+1)^{2}+B(2 x-1)(x+1)+C(2 x-1) \\
\& A=6, B=-3, C=8 \\
\& \int \ldots=3 \ln (2 x-1) \ldots \\
\& \ldots-3 \ln (x+1)-\frac{8}{x+1}(+c) \\
\& \int_{1}^{2} \ldots=3 \ln 3-3 \ln 3+3 \ln 2-\left(\frac{8}{3}-4\right) \\
\& \ldots=\frac{4}{3}+3 \ln 2
\end{aligned}
\] \& \[
\begin{gathered}
\text { B1 } \\
\text { M1A2 } \\
\text { M1 } \\
\text { A1 } \checkmark \\
\text { B1 } \checkmark \\
\text { B1 } \checkmark \\
\\
\text { m1 } \\
\\
\text { A1 }
\end{gathered}
\] \& 4

6 \& | A1 if only one error |
| :--- |
| ft wrong values for coeffs throughout this question |

\hline \& Total \& \& 10 \&

\hline \multirow[t]{5}{*}{| 8(a)(i) |
| :--- |
| (ii) |
| (b)(i) |
| (ii) |} \& \multirow[t]{5}{*}{| $\begin{aligned} & x+y=2 t^{2}, x-y=4 / t \\ & (x+y)(x-y)^{2}=\left(2 t^{2}\right)\left(16 / t^{2}\right) \\ & \ldots=32 \\ & \frac{\mathrm{~d} x}{\mathrm{~d} t}=2 t-\frac{2}{t^{2}}, \frac{\mathrm{~d} y}{\mathrm{~d} t}=2 t+\frac{2}{t^{2}} \end{aligned}$ |
| :--- |
| Use of chain rule |
| When $t=2, \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{9}{7}$ |
| The point is $(5,3)$ |
| The tangent is $y-3=\frac{9}{7}(x-5)$ ie $9 x-7 y=24$ |} \& B2 \& 2 \&

\hline \& \& $$
\begin{aligned}
& \text { M1 } \\
& \text { A1 }
\end{aligned}
$$ \& 2 \& Convincingly shown (ag)

\hline \& \& M1A1
m1 \& \&

\hline \& \& $$
\begin{gathered}
\text { A2,1 } 1 \checkmark \\
\text { B1 } \\
\text { M1 }
\end{gathered}
$$ \& 5 \& ft numerical or sign error

\hline \& \& A1, \& 3 \& ft one numerical error

\hline \& Total \& \& 12 \&

\hline
\end{tabular}

MPC4 (cont)

