ASSESSMENT and
QUALIFICATIONS
ALLIANCE

General Certificate of Education

Mathematics - Further Pure

SPECIMEN UNITS AND
 MARK SCHEMES

General Certificate of Education

Specimen Unit

Advanced Subsidiary Examination

MATHEMATICS

Unit Further Pure 1

In addition to this paper you will require:

- an 8-page answer book;
- the AQA booklet of formulae and statistical tables.

You may use a graphics calculator.
Time allowed: 1 hour 30 minutes

Instructions

- Use blue or black ink or ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The Examining Body for this paper is AQA. The Paper Reference is MFP1.
- Answer all questions.
- All necessary working should be shown; otherwise marks for method may be lost.
- The final answer to questions requiring the use of tables or calculators should normally be given to three significant figures.

Information

- The maximum mark for this paper is 75 .
- Mark allocations are shown in brackets.

Advice

- Unless stated otherwise, formulae may be quoted, without proof, from the booklet.

Answer all questions.

1 The equation $x^{3}-5 x+7=0$ has a single real root α.
Use the Newton Raphson method with first approximation $x_{1}=-3$ to find the value of x_{2}, giving your answer to 3 significant figures.

2 The roots of the quadratic equation $x^{2}+4 x-3=0$ are α and β.
(a) Without solving the equation, find the value of:
(i) $\alpha^{2}+\beta^{2}$;
(ii) $\left(\alpha^{2}+\frac{2}{\beta}\right)\left(\beta^{2}+\frac{2}{\alpha}\right)$.
(6 marks)
(b) Determine a quadratic equation with integer coefficients which has roots

$$
\begin{equation*}
\left(\alpha^{2}+\frac{2}{\beta}\right) \text { and }\left(\beta^{2}+\frac{2}{\alpha}\right) \tag{4marks}
\end{equation*}
$$

No credit will be given for simply using a calculator to find α and β in order to find the values in part (a).

3 (a) Sketch the graph of $y=\frac{3 x+4}{x-2}$.
State the coordinates of the points where the curve crosses the coordinate axes and write down the equations of its asymptotes.
(b) Hence, or otherwise, solve the inequality

$$
\frac{3 x+4}{x-2}>1
$$

4 The complex number z satisfies the equation

$$
\mathrm{i} z+4=(2-\mathrm{i}) z^{*}
$$

where z^{*} is the complex conjugate of z.
Find z in the form $a+\mathrm{i} b$, where a and b are real.

5 Find the general solution in radians of the equation

$$
\tan \left(2 x+\frac{\pi}{5}\right)=\sqrt{3}
$$

giving your exact answer in terms of π.
(6 marks)

6 The matrix \boldsymbol{A} is $\left[\begin{array}{cc}\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\end{array}\right]$ and the matrix \boldsymbol{B} is $\left[\begin{array}{cc}\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}\end{array}\right]$.
(a) Find the matrix product $\boldsymbol{A B}$.
(b) The transformation \mathbf{T} is given by

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\boldsymbol{M}\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Describe the geometrical transformation represented by \mathbf{T} for each of the following cases:
(i) $\boldsymbol{M}=\boldsymbol{A}$;
(ii) $\boldsymbol{M}=\boldsymbol{B}$;
(iii) $\boldsymbol{M}=\boldsymbol{A B}$.

7 (a) Find $\int_{a}^{b} x^{-\frac{3}{2}} \mathrm{~d} x$, where $b>a>0$.
3 marks)
(b) Hence determine, where possible, the value of the following integrals, giving a reason if the value cannot be found.
(i) $\int_{4}^{\infty} x^{-\frac{3}{2}} \mathrm{~d} x$
(ii) $\int_{0}^{1} x^{-\frac{3}{2}} \mathrm{~d} x$
(4 marks)

8 (a) Express $\sum_{r=1}^{n}(r-1)(3 r-2)$ in the form $a \sum_{r=1}^{n} r^{2}+b \sum_{r=1}^{n} r+c n$, stating the values of the constants a, b and c.
(b) Hence prove that $\sum_{r=1}^{n}(r-1)(3 r-2)=n^{2}(n-1)$.

9 A curve has equation $y=\frac{2 x^{2}-x-7}{x-3}$.
(a) (i) Prove that the curve crosses the line $y=k$ when

$$
2 x^{2}-(k+1) x+(3 k-7)=0 .
$$

(ii) Hence show that if x is real then either $k \leqslant 3$ or $\mathrm{k} \geqslant 19$.
(b) Use the results from part (a) to find the coordinates of the turning points of the curve.
(4 marks)

10 A mathematical model is used by an astronomer to investigate features of the moons of a particular planet. The mean distance of a moon from the planet, measured in millions of kilometres, is denoted by x, and the corresponding period of its orbit is P days.

The model assumes that the graph of $\log _{10} P$ against $\log _{10} x$ is the straight line drawn below.

(a) Use the graph to estimate the period of the orbit of a moon for which $x=1.45$. (3 marks)
(b) The graph would suggest that P and x are related by an equation of the form

$$
P=k x^{\alpha}
$$

where k and α are constants.
(i) Express $\log _{10} P$ in terms of $\log _{10} k, \log _{10} x$ and α.
(ii) Use the graph to determine the values of k and α, giving your answers to 2 significant figures.

END OF QUESTIONS

MFP1 Specimen

MFP1 (cont)

MFP1 (cont)

MFP1 (cont)

\begin{tabular}{|c|c|c|c|c|}
\hline Question \& Solution \& Marks \& Total \& Comments \\
\hline \begin{tabular}{l}
\[
8 \text { (a) }
\] \\
(b)
\end{tabular} \& \begin{tabular}{l}
\[
\begin{aligned}
\& (r-1)(3 r-2)=3 r^{2}-5 r+2 \\
\& \sum 1=n
\end{aligned}
\] \\
Printed answer with \(a=3, b=-5, c=2\) \\
Use of \(\sum r^{2}\) and \(\sum r\) formulae
\[
\begin{aligned}
\& \frac{3 n}{6}(n+1)(2 n+1)-\frac{5 n}{2}(n+1)+2 n \\
\& =n^{2}(n-1)
\end{aligned}
\]
\end{tabular} \& \begin{tabular}{l}
M1 \\
B1 \\
A1 \\
M1 \\
A1 \\
m1 \\
A1
\end{tabular} \& 3

4 \& | $3 \sum r^{2}-5 \sum r+2 n$ |
| :--- |
| ft |
| Factorising or multiplying out ag |

\hline \& Total \& \& 7 \&

\hline | $9 \text { (a)(i) }$ |
| :--- |
| (ii) |
| (b) | \& | $k(x-3)=2 x^{2}-x-7$ leading to $2 x^{2}-(k+1) x+(3 k-7)=0$ |
| :--- |
| Use of discriminant $b^{2}-4 a c$ $(k+1)^{2}-8(3 k-7)$ |
| Solving quadratic equation or factorising $(k-3)(k-19)$ |
| $b^{2}-4 a c \geq 0$. Hence $k \leq 3$, or $k \geq 19$ $\begin{aligned} & k=3: 2 x^{2}-4 x+2=0 \\ & \quad \Rightarrow x=1 \\ & k=19: \quad 2 x^{2}-20 x+50=0 \Rightarrow x=5 \end{aligned}$ |
| Coordinates of TPs $(1,3)$ and $(5,19)$ | \& | B1 |
| :--- |
| M1 |
| A1 |
| m1 |
| A1 |
| A1 |
| M1 |
| A1 |
| A1 |
| A1 | \& 1

5
5

4 \& | ag |
| :--- |
| Or use of formula $k=3, k=19$ |
| ag be convinced |
| Either k value and attempt to solve/factorise |
| Both |

\hline \& Total \& \& 10 \&

\hline | $10 \text { (a) }$ (b)(i) |
| :--- |
| (ii) | \& | $\log 1.45=0.161 \ldots$ |
| :--- |
| From graph $\log P=1.14$ $P=14$ days (to nearest day) $\log _{10} P=\log _{10} k+\alpha \log _{10} x$ |
| Intercept on vertical axis is 0.9 $\begin{gathered} \log _{10} k=0.9 \\ k=7.9 \end{gathered}$ |
| Gradient of graph is given by α $\alpha=1.5$ | \& | M1 m1 A1 B1 |
| :--- |
| M1 |
| A1 |
| M1 |
| A1 | \& | 3 |
| :--- |
| 1 |
| 4 | \&

\hline \& Total \& \& 8 \&

\hline \& TOTAL \& \& 75 \&

\hline
\end{tabular}

General Certificate of Education
Specimen Unit
Advanced Level Examination

MATHEMATICS
MFP2
Unit Further Pure 2

In addition to this paper you will require:

- an 8-page answer book;
- the AQA booklet of formulae and statistical tables.
You may use a graphics calculator.
Time allowed: 1 hour 30 minutes

Instructions

- Use blue or black ink or ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The Examining Body for this paper is AQA. The Paper Reference is MFP2.
- Answer all questions.
- All necessary working should be shown; otherwise marks for method may be lost.
- The final answer to questions requiring the use of tables or calculators should normally be given to three significant figures.

Information

- The maximum mark for this paper is 75.
- Mark allocations are shown in brackets.

Advice

- Unless stated otherwise, formulae may be quoted, without proof, from the booklet.

Answer all questions.

1 The cubic equation

$$
x^{3}+2 x^{2}+5 x+k=0
$$

where k is real, has roots α, β and γ.
(a) Write down the values of:
(i) $\alpha+\beta+\gamma$;
(ii) $\alpha \beta+\beta \gamma+\gamma \alpha$.
(b) (i) Show that $\alpha^{2}+\beta^{2}+\gamma^{2}=-6$.
(ii) Hence explain why the cubic equation must have two non-real roots.
(c) Given that one root is $-2+3 i$, find the value of k.

2 (a) Given that

$$
3 \sinh ^{2} x=2 \cosh x+2 \quad(x>0)
$$

find the value of $\cosh x$.
(b) Hence obtain x in the form $\ln p$, where p is an integer to be determined.

3 (a) Express $\frac{1}{(r-1)(r+1)}$ in partial fractions.
(b) Hence find

$$
\sum_{r=2}^{n} \frac{1}{\left(r^{2}-1\right)}
$$

giving your answer in the form

$$
A+\frac{B}{n}+\frac{C}{n+1}
$$

4 (a) Draw an Argand diagram to show the points A and B which represent the complex numbers $1-3 i$ and $5-i$ respectively.
(b) (i) The circle C has $A B$ as a diameter. Find its radius and the coordinates of its centre.
(ii) Write down the equation of C in the form

$$
\left|z-z_{0}\right|=k
$$

5 (a) Use de Moivre's theorem to show that if $z=\cos \theta+\mathrm{i} \sin \theta$, then

$$
z^{n}+\frac{1}{z^{n}}=2 \cos n \theta
$$

(b) (i) Write down the expansion of $\left(z-\frac{1}{z}\right)^{4}$ in terms of z.
(ii) Hence, or otherwise, show that

$$
8 \sin ^{4} \theta=\cos 4 \theta-4 \cos 2 \theta+3
$$

(c) Solve the equation

$$
8 \sin ^{4} \theta=\cos 4 \theta+1
$$

in the interval $-\pi<\theta \leq \pi$, giving your answers in terms of π.
6 (a) Express $\sqrt{3}+\mathrm{i}$ in the form $\mathrm{r}(\cos \theta+\mathrm{i} \sin \theta)$, where $\mathrm{r}>0$ and $-\pi<\theta<\pi$.
(b) Obtain similar expressions for:
(i) $\sqrt{3}-\mathrm{i}$
(ii) $\frac{1}{\sqrt{3}+\mathrm{i}}$

7 Prove by induction that, for all positive integers n,

$$
\begin{equation*}
\sum_{r=1}^{n}(2 r-1)^{2}=\frac{1}{3} n(2 n-1)(2 n+1) \tag{7marks}
\end{equation*}
$$

8 (a) Use the definition $\cosh t=\frac{1}{2}\left(\mathrm{e}^{t}+\mathrm{e}^{-t}\right)$ to show that

$$
2 \cosh ^{2} t=1+\cosh 2 t
$$

(b) A curve is given parametrically by the equations

$$
x=2 \sinh t, \quad y=\cosh ^{2} t
$$

(i) Show that $\left(\frac{\mathrm{d} x}{\mathrm{~d} t}\right)^{2}+\left(\frac{\mathrm{d} y}{\mathrm{~d} t}\right)^{2}=4 \cosh ^{4} t$ (6 marks)
(ii) Hence show that the length of arc of the curve from the point where $t=0$ to the point where $t=\frac{1}{2}$ is

$$
\frac{1}{2}(1+\sinh 1)
$$

(c) Find the Cartesian equation of the curve.

END OF QUESTIONS

MFP2 Specimen

Question	Solution	Marks	Total	Comments
1(a)(i)	$\alpha+\beta+\gamma=-2$	B1	1	
(ii)	$\alpha \beta+\beta \gamma+\gamma \alpha=5$	B1	1	
(b)(i)	$\alpha^{2}+\beta^{2}+\gamma^{2}=\left(\sum \alpha\right)^{2}-2 \sum \alpha \beta$	M1A1		
	$=4-10=-6$	A1	3	
(ii)	Since sum of squares <0, some of α, β, γ must be non-real	E1		
	As coefficients real, non real roots come in conjugate pairs	E1	2	
(c)	$-2+3 \mathrm{i}$ is a root, so is $-2-3 \mathrm{i}$	B1		p.i
	$(-2+3 i)(-2-3 i)=13$	B1		Alternative solution - substituting $-2+3 \mathrm{i}$ into cubic $(-2+3 i)^{2}=-5-12 i$
	and third root is +2	B1 \checkmark		$(-2+3 \mathrm{i})^{3}=46+9 \mathrm{i}$
	$\alpha \beta \gamma=26$	$\mathrm{B} 1 \sqrt{ }$		equation involving k $k=-26$
	$k=-\alpha \beta \gamma=-26$	B1 \checkmark	5	4/5 for 1 slip
	Total		12	
2(a)	$3\left(\cosh ^{2} x-1\right)-2 \cosh x-2=0$			
	$(3 \cosh x-5)(\cosh x+1)=0$	A1		Or use of formula
	$\cosh x \neq-1$	E1		Some indication of rejection
	$\cosh x=\frac{5}{3}$	A1 \checkmark	4	
(b)	$x=\ln \left(\frac{5}{3}+\sqrt{\frac{16}{9}}\right)=\ln 3$	$\begin{gathered} \text { M1 } \\ \text { A1 } \checkmark \end{gathered}$	2	ft provided p is an integer
	Total		6	

MFP2 (cont)

Question	Solution	Marks	Total	Comments
$3(\mathrm{a})$ (b)	$\begin{aligned} & \frac{1}{r^{2}-1}=\frac{1}{2}\left(\frac{1}{r-1}-\frac{1}{r+1}\right) \\ & \sum_{r=2}^{n} \frac{1}{r^{2}-1}=\frac{1}{2}\left(\frac{1}{2-1}-\frac{1}{2+1}\right) \\ & +\frac{1}{2}\left(\frac{1}{3-1}-\frac{1}{3+1}\right) \\ & +\frac{1}{2}\left(\frac{1}{4-1}-\frac{1}{4+1}\right) \\ & +\frac{1}{2}\left(\frac{1}{n-2}-\frac{1}{n}\right) \\ & +\frac{1}{2}\left(\frac{1}{n-1}-\frac{1}{n+1}\right) \\ & S_{n}=\frac{1}{2}\left(\frac{3}{2}-\frac{1}{n}-\frac{1}{n+1}\right) \end{aligned}$	M1A1 M1A1 A1 M1A1	5	
	Total		7	
4(a) (b)(i) (ii)	Points plotted correctly The centre must be $\frac{1-3 i+5-i}{2}=3-2 i$ The radius must be $\sqrt{\left((3-1)^{2}+(-2+3)^{2}\right)}=\sqrt{5}$ \therefore equation is $\|z-3+2 i\|=\sqrt{5}$	B1 M1A1 M1A1 M1 A1 $\sqrt{ }$	4	Accept (3,-2), but (3,-2i) gets A0 $\sqrt{(3-1)^{2}+(-2 i+3 i)^{2}} \text { M0 }$ If diameter is taken as $\sqrt{20}$ or radius taken as $\sqrt{20}$ allow B1
	Total		7	

MFP2 (cont)

MFP2 (cont)

Question	Solution	Marks	Total	Comments
8(a)	$2 \cosh ^{2} t=2 \times \frac{1}{4}\left(\mathrm{e}^{t}+\mathrm{e}^{-t}\right)^{2}$	M1		Or $\cosh ^{2} t=\frac{1}{4}\left(\mathrm{e}^{t}+\mathrm{e}^{-t}\right)^{2}=\frac{1}{4}\left(\mathrm{e}^{2 t}+2+\mathrm{e}^{-2 t}\right)$
(b)(i)	$\begin{aligned} & =\frac{1}{2}\left(\mathrm{e}^{2 t}+2+\mathrm{e}^{-2 t}\right) \\ & =1+\frac{1}{2}\left(\mathrm{e}^{2 t}+\mathrm{e}^{-2 t}\right) \end{aligned}$	A1		
	$=1+\cosh 2 t$	A1	3	ag
	$\frac{\mathrm{d} x}{\mathrm{~d} t}=2 \cosh t$	B1		
	$\frac{\mathrm{d} y}{\mathrm{~d} t}=2 \cosh t \sinh t$	B1		
	$\begin{aligned} & \left(\frac{\mathrm{d} x}{\mathrm{~d} t}\right)^{2}+\left(\frac{\mathrm{d} y}{\mathrm{~d} t}\right)^{2}=4 \cosh ^{2} t+4 \cosh ^{2} t \sinh ^{2} t \\ & =4 \cosh ^{2} t\left(1+\sinh ^{2} t\right) \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \checkmark \\ \text { m1 } \end{gathered}$		Used relevantly
	$=4 \cosh ^{4} t$	A1	6	
(ii)	$s=\int_{0}^{\frac{1}{2}} 2 \cosh ^{2} t \mathrm{~d} t$	M1		
	$=\int_{0}^{\frac{1}{2}}(1+\cosh 2 t) \mathrm{d} t$	m1		
	$=\left[t+\frac{1}{2} \sinh 2 t\right]_{0}^{\frac{1}{2}}$	A1		
	$=\frac{1}{2}+\frac{1}{2} \sinh 1$	A1	4	
(c)	Use of $\cosh ^{2} t-\sinh ^{2} t=1$	M1		
	$y=1+\sinh ^{2} t$	A1		
	$y=1+\frac{1}{4} x^{2}$	A1 \checkmark	3	
	Total		16	
	TOTAL		75	

In addition to this paper you will require:

- an 8-page answer book;
- the AQA booklet of formulae and statistical tables.

You may use a graphics calculator.
Time allowed: 1 hour 30 minutes

Instructions

- Use blue or black ink or ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The Examining Body for this paper is AQA. The Paper Reference is MFP3.
- Answer all questions.
- All necessary working should be shown; otherwise marks for method may be lost.
- The final answer to questions requiring the use of tables or calculators should normally be given to three significant figures.

Information

- The maximum mark for this paper is 75 .
- Mark allocations are shown in brackets.

Advice

- Unless stated otherwise, formulae may be quoted, without proof, from the booklet.

Answer all questions.

1

The diagram shows the curve C with polar equation

$$
r=a \sin \frac{1}{2} \theta, \quad 0<\theta \leq 2 \pi
$$

Find the area bounded by C.
(6 marks)

2 (a) Find the general solution of the differential equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+4 y=6 \cos x \tag{7marks}
\end{equation*}
$$

(b) (i) Find the value of the constant λ for which $\lambda x \sin 2 x$ is a particular integral of the differential equation

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+4 y=6 \cos 2 x
$$

(ii) Hence find the general solution of this differential equation.

3 The function $y(x)$ satisfies the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\mathrm{f}(x, y)
$$

where

$$
\mathrm{f}(x, y)=\frac{x y}{\sqrt{x^{2}+y^{2}}}
$$

and

$$
y(1)=0.5
$$

(a) Use the Euler formula

$$
y_{r+1}=y_{r}+h \mathrm{f}\left(x_{r}, y_{r}\right)
$$

with $h=0.1$ to obtain an approximation to $y(1.1)$ giving your answer in four decimal places.
(b) (i) Use the formula

$$
y_{r+1}=y_{r}+\frac{1}{2}\left(k_{1}+k_{2}\right)
$$

where $k_{1}=h \mathrm{f}\left(x_{r}, y_{r}\right)$
and $\quad k_{2}=h \mathrm{f}\left(x_{r}+h, y_{r}+k_{1}\right)$
with $h=0.1$ to obtain a further approximation to $y(1.1)$.
(5 marks)
(ii) Use the formula given in part (b)(i), together with your value for $y(1.1)$ obtained in part (b)(i), to obtain an approximation to $y(1.2)$, giving your answer to three decimal places.

4 (a) A point has Cartesian coordinates (x, y) and polar coordinates (r, θ), referred to the same origin.

Express $\cos \theta$ and $\sin \theta$ in terms of x, y, and r.
(b) (i) Hence find the Cartesian equation of the curve with polar equation

$$
r=2 \cos \theta-4 \sin \theta
$$

(ii) Deduce that the curve is a circle and find its radius and the Cartesian coordinates of its centre.

5 (a) Using the substitution $y=\frac{1}{x}$, or otherwise, evaluate $\lim _{x \rightarrow \infty} \frac{\ln x}{x^{k}}$ where $k>0$.
(b) Hence evaluate

$$
\int_{1}^{\infty} \frac{\ln x}{x^{2}} \mathrm{~d} x
$$

6 (a) The function $\mathrm{f}(x)$ is defined by

$$
\mathrm{f}(x)=\mathrm{e}^{(\cos x-1)}
$$

Use Maclaurin's theorem to show that when $\mathrm{f}(x)$ is expanded in ascending powers of x :
(i) the first two non-zero terms are

$$
1-\frac{1}{2} x^{2}
$$

(ii) the co-efficient of x^{3} is zero.
(b) Find

$$
\lim _{x \rightarrow 0} \frac{1-\mathrm{e}^{(\cos x-1)}}{\sin ^{2} x}
$$

7 (a) Show that the substitution

$$
u=\frac{\mathrm{d} y}{\mathrm{~d} x}-y
$$

transforms the differential equation

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+2 \frac{\mathrm{~d} y}{\mathrm{~d} x}-3 y=5 \mathrm{e}^{-4 x}
$$

into the equation

$$
\frac{\mathrm{d} u}{\mathrm{~d} x}+3 u=5 \mathrm{e}^{-4 x}
$$

(3 marks)
(b) Show that $\mathrm{e}^{3 x}$ is an integrating factor of

$$
\frac{\mathrm{d} u}{\mathrm{~d} x}+3 u=5 \mathrm{e}^{-4 x}
$$

Hence find the general solution of this differential equation, expressing u in terms of x.
(c) Hence, or otherwise, solve the differential equation

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+2 \frac{\mathrm{~d} y}{\mathrm{~d} x}-3 y=5 \mathrm{e}^{-4 x}
$$

completely, given that $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ and $y=3$ when $x=0$.
(9 marks)

END OF QUESTIONS

MFP3 Specimen

\begin{tabular}{|c|c|c|c|c|}
\hline Question \& Solution \& Marks \& Totals \& Comments \\
\hline 1 \& \[
A=\frac{1}{2} \int_{0}^{2 \pi} a^{2} \sin ^{2} \frac{1}{2} \theta \mathrm{~d} \theta
\]
\[
\begin{aligned}
\& =\frac{1}{2} \int_{0}^{2 \pi} a^{2}\left(\frac{1-\cos \theta}{2}\right) \mathrm{d} \theta \\
\& =\left[\frac{1}{2} a^{2}\left(\frac{\theta}{2}-\frac{\sin \theta}{2}\right)\right]_{0}^{2 \pi} \\
\& =\frac{1}{2} \pi a^{2}
\end{aligned}
\] \& \begin{tabular}{l}
M1A1 \\
B1 \\
M1 \\
A1 \\
A1 \(\sqrt{ }\)
\end{tabular} \& 6 \& \begin{tabular}{l}
M1 for \(\int \frac{1}{2} r^{2} \mathrm{~d} \theta\) used \\
A1 if used correctly B1 for limits \\
M0 if \(\cos 2 \theta\) used \\
cao
\end{tabular} \\
\hline \& Total \& \& 6 \& \\
\hline 2(a) \& \[
\begin{aligned}
\& m= \pm 2 \mathrm{i} \\
\& \text { C.F. is } A \cos 2 x+B \sin 2 x \\
\& \text { or } A \cos (2 x+B) \\
\& \text { but not } A \mathrm{e}^{2 \mathrm{ix}}+B \mathrm{e}^{-2 \mathrm{ix}} \\
\& \text { P.I. Try } y=p \cos x+q \sin x \\
\& -p \cos x-q \sin x+4(p \cos x+q \sin x)=6 \cos x \\
\& p=2 \\
\& \text { GS } y=A \cos 2 x+B \sin 2 x+2 \cos x \\
\& \frac{\mathrm{~d} y}{\mathrm{~d} x}=2 \lambda x \cos 2 x+\lambda \sin 2 x \\
\& \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=2 \lambda \cos 2 x-4 \lambda x \sin 2 x+2 \lambda \cos 2 x \\
\& 4 \lambda \cos 2 x-4 \lambda x \sin 2 x+4 \lambda x \sin 2 x=6 \cos 2 x \\
\& \lambda=\frac{3}{2} \\
\& \text { GS } y=A \cos 2 x+\left(B+\frac{3}{2} x\right) \sin 2 x
\end{aligned}
\] \& \begin{tabular}{l}
B1 \\
M1 \\
A1 \(\checkmark\) \\
M1 \\
A1 \\
A1 \(\sqrt{ }\) \\
B1 \(\checkmark\) \\
M1A1 \\
Al \(\sqrt{ }\) \\
M1A1 \\
A1 \(\checkmark\) \\
B1 \(\sqrt{ }\)
\end{tabular} \& 7

7 \& | If m is real give M0 |
| :--- |
| A1 ft is for m complex but incorrect |
| For adding their C.F. to their P.I. Must be 2 constants $\left\{\begin{array}{l}\text { If } y=\lambda x \sin 2 x+\mu x \cos 2 x \text { used, then } \\ \text { working at each stage must be correct } \\ \text { for equivalent marks }\end{array}\right.$ cao |

\hline \& Total \& \& 14 \&

\hline
\end{tabular}

MFP3 (cont)

Question	Solution	Marks	Totals	Comments
3(a)	$y_{1}=0.5+0.1 \frac{1 \times 0.5}{\sqrt{0.5^{2}+1^{2}}}=0.5447(2136)$	$\begin{gathered} \text { M1A1 } \\ \text { A1 } \end{gathered}$	3	
(b)(i)	$k_{1}=0.1 \mathrm{f}(1,0.5)=0.04472(136)$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \checkmark \end{aligned}$		M1 for candidate's value from part (a) $\times 0.1$
	$k_{2}=0.1 \mathrm{f}(1.1,0.5447)=0.48813162$	$\begin{gathered} \text { M1 } \\ \text { A1 } \checkmark \end{gathered}$		
	$\begin{aligned} & y_{1}=0.5+\frac{1}{2}(0.04472+0.048813) \\ & =0.5468 \end{aligned}$	$\mathrm{A} 1 \checkmark$	5	
(ii)	$k_{1}=0.1 \mathrm{f}(1.1,0.5468)=0.04896$	$\begin{gathered} \text { M1 } \\ \text { A1 } \checkmark \end{gathered}$		
	$k_{2}=0.1 \mathrm{f}(1.2,0.5468+0.04896)$			
	$=0.05336$	$\begin{gathered} \text { M1 } \\ \text { A1 } \checkmark \end{gathered}$		
	$y_{2}=0.5979 \ldots \approx 0.598$	A1 \checkmark	5	If answer not given to 3dp withhold this mark
	Total		13	
4(a)	$\cos \theta=\frac{x}{r}, \sin \theta=\frac{y}{r}$	B1	1	
(b)(i)	$r=2 \frac{x}{r}-4 \frac{y}{r}$	M1		
	use of $x^{2}+y^{2}=r^{2}$	M1		
	$x^{2}+y^{2}=2 x-4 y$	A1	3	
(ii)	$(x-1)^{2}+(y+2)^{2}=5$	$\begin{gathered} \text { M1 } \\ \text { A1 } \checkmark \end{gathered}$		
	Centre ($1,-2$), radius $\sqrt{5}$	A1〕	3	
	Total		7	
5(a)	$\left(\frac{1}{y}\right)^{-k} \ln \left(\frac{1}{y}\right)=-\frac{\ln y}{y^{-k}}=-y^{k} \ln y$	M1A1		
	$x \rightarrow \infty, y \rightarrow 0$ solim $y^{k} \ln y=0$	A1	3	
(b)	$\int_{1}^{\infty} \frac{\ln x}{x^{2}} \mathrm{~d} x=\left[-\frac{\ln x}{x}-\frac{1}{x}\right]_{1}^{\infty}$	M1A1		
		A1	3	
	Total		6	

MFP3 (cont)

Question	Solution	Marks	Totals	Comments
6(a)	$\mathrm{f}(\mathrm{x})=\mathrm{e}^{\cos x-1} \mathrm{f}(0)=1$	B1		
	$\mathrm{f}^{\prime}(x)=-\sin x \mathrm{e}^{\cos x-1} \mathrm{f}^{\prime}(0)=0$	M1A1		
	$\mathrm{f}^{\prime \prime}(x)=\left(-\cos x+\sin ^{2} x\right) \mathrm{e}^{\cos x-1}$	M1A1		
	$\mathrm{f}^{\prime \prime}(x)=1$	A1 \checkmark	6	
(b)	$\mathrm{f}^{\prime \prime \prime}(x)=(\sin x+2 \sin x \cos) \mathrm{e}^{\cos x-1}$	M1A1		ft
	$+\left(-\cos x+\sin ^{-2} x\right)(-\sin x) \mathrm{e}^{\cos x-1}$			
	$\mathrm{f}^{\prime \prime \prime}(x)=0$	A1 \checkmark	3	
(c)	$\sin ^{2} x \approx x^{2}$	B1		[Ignore higher power of x]
	$\therefore \lim _{x \rightarrow 0} \frac{1-e^{\cos x-1}}{\sin ^{2} x}=\frac{1}{2}$	M1A1	3	ft
	Total		12	
7(a)	$\frac{\mathrm{d} u}{\mathrm{~d} x}=\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-\frac{\mathrm{d} y}{\mathrm{~d} x}$	B1		
	$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-\frac{\mathrm{d} y}{\mathrm{~d} x}+3\left(\frac{\mathrm{~d} y}{\mathrm{~d} x}-y\right)=5 \mathrm{e}^{-4 x}$	M1		oe
	$\frac{\mathrm{d} u}{\mathrm{~d} x}+3 u=5 \mathrm{e}^{-4 x}$	A1	3	ag
(b)	Integrating factor is $\mathrm{e}^{\int 3 d x}=\mathrm{e}^{3 x}$	B1		
	$\frac{\mathrm{d}}{\mathrm{~d} x}\left(u \mathrm{e}^{3 x}\right)=5 \mathrm{e}^{-x}$	M1A1		
	$u \mathrm{e}^{3 x}=-5 \mathrm{e}^{-x}+A$	A1 \checkmark		
	$u=-5 \mathrm{e}^{-4 x}+A \mathrm{e}^{-3 x}$	A1 \checkmark	5	Provided A appears

MFP3 (cont)

Question	Solution	Marks	Totals	Comments
7 (c)	$\frac{\mathrm{d} y}{\mathrm{~d} x}-y=-5 \mathrm{e}^{-4 x}+A \mathrm{e}^{-3 x}$ Integrating factor is $\mathrm{e}^{-\int 1 \mathrm{dx}}=\mathrm{e}^{-x}$ $\begin{aligned} & \frac{\mathrm{d}}{\mathrm{~d} x}\left(y \mathrm{e}^{-x}\right)=-5 \mathrm{e}^{-5 x}+A \mathrm{e}^{-4 x} \\ & y \mathrm{e}^{-x}=\mathrm{e}^{-5 x}-\frac{1}{4} A \mathrm{e}^{-4 x}+B \\ & y=\mathrm{e}^{-4 x}-\frac{1}{4} A \mathrm{e}^{-3 x}+B \mathrm{e}^{x} \\ & A=2, \quad B=\frac{5}{2} \\ & y=\mathrm{e}^{-4 x}-\frac{1}{2} \mathrm{e}^{-3 x}+\frac{5}{2} \mathrm{e}^{x} \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { B1 } \\ \text { M1 } \\ \text { A1 } \downarrow \\ \text { A1 } \checkmark \\ \text { A1 } \downarrow \\ \text { B1 } \\ \text { B1 } \\ \text { A1 } \end{gathered}$	9	Can be given at any stage
alt (c)	Auxillary equation is $m^{2}+2 m-3=0$ $m=-3,1$ Complementary function is $y=A \mathrm{e}^{-3 x}+B \mathrm{e}^{x}$ Particular integral: try $y=k \mathrm{e}^{-4 x}$ $\begin{aligned} & 16 k \mathrm{e}^{-4 x}-8 k \mathrm{e}^{-4 x}-3 k \mathrm{e}^{-4 x}=5 \mathrm{e}^{-4 x} \\ & 5 k=5, \quad k=1 \\ & \therefore y=\mathrm{e}^{-4 x}+A \mathrm{e}^{-3 x}+B \mathrm{e}^{x} \\ & \frac{\mathrm{~d} y}{\mathrm{~d} x}=\ldots \\ & A=-\frac{1}{2}, B=\frac{5}{2}\left[y=\mathrm{e}^{-4 x}-\frac{1}{2} \mathrm{e}^{-3 x}+\frac{5}{2} \mathrm{e}^{x}\right] \end{aligned}$	M1 A1 A1 M1 A1 A1V B1 B2,1,0	9	
	Total		17	
	TOTAL		75	

General Certificate of Education

Specimen Unit

Advanced Level Examination
MATHEMATICS

Unit Further Pure 4

MFP4

In addition to this paper you will require:

- an 8-page answer book;
- the AQA booklet of formulae and statistical tables.

You may use a graphics calculator.
Time allowed: 1 hour 30 minutes

Instructions

- Use blue or black ink or ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The Examining Body for this paper is AQA. The Paper Reference is MFP4.
- Answer all questions.
- All necessary working should be shown; otherwise marks for method may be lost.
- The final answer to questions requiring the use of tables or calculators should normally be given to three significant figures.

Information

- The maximum mark for this paper is 75 .
- Mark allocations are shown in brackets.

Advice

- Unless stated otherwise, formulae may be quoted, without proof, from the booklet.

Answer all questions.

1 The matrices \mathbf{A} and \mathbf{B} are defined by

$$
\mathbf{A}=\left[\begin{array}{rr}
1 & 1 \\
-1 & 2
\end{array}\right] \quad \mathbf{B}=\left[\begin{array}{lll}
1 & 0 & 3 \\
0 & 1 & 1
\end{array}\right]
$$

Find the matrices:
(a) $\mathbf{A B}$;
(2 marks)
(b) $\quad \mathbf{B}^{\mathrm{T}} \mathbf{A}^{\mathrm{T}}$.
(2 marks)

2 The position vectors \mathbf{a}, \mathbf{b} and \mathbf{c} of three points A, B and C are

$$
\left[\begin{array}{r}
1 \\
-1 \\
2
\end{array}\right],\left[\begin{array}{r}
-1 \\
2 \\
1
\end{array}\right] \quad \text { and }\left[\begin{array}{r}
2 \\
-3 \\
3
\end{array}\right]
$$

respectively.
(a) Calculate $(\mathbf{b}-\mathbf{a}) \times(\mathbf{c}-\mathbf{a})$,
(b) Hence find the exact value of the area of the triangle $A B C$.

3 The matrices A and \mathbf{B} are defined by

$$
\begin{gathered}
\mathbf{A}=\left[\begin{array}{ll}
1 & 0 \\
3 & 1
\end{array}\right] \\
\mathbf{B}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos 45^{\circ} & -\sin 45^{\circ} \\
0 & \sin 45^{\circ} & \cos 45^{\circ}
\end{array}\right]
\end{gathered}
$$

(a) Give a geometrical description of each of the transformations represented by the matrices \mathbf{A} and \mathbf{B}.
(6 marks)
(b) For each of these transformations, find the line of invariant points.

4 (a) Factorise
$\left|\begin{array}{lll}x^{2} & x & 1 \\ 1 & 1 & 1 \\ 4 & 2 & 1\end{array}\right|$
(4 marks)
(b) It is given that

$$
\mathbf{A}=\left[\begin{array}{lll}
x & 0 & 2 \\
0 & x & 9 \\
0 & 1 & x
\end{array}\right] \quad \text { and } \quad \mathbf{B}=\left[\begin{array}{lll}
x^{2} & x & 1 \\
1 & 1 & 1 \\
4 & 2 & 1
\end{array}\right]
$$

Using your result in part (a), or otherwise, express $\operatorname{det}(\mathrm{AB})$ in factorised form. (4 marks)

5 The matrix \mathbf{M} is defined by

$$
\mathbf{M}=\left[\begin{array}{rrr}
2 & -1 & 1 \\
2 & 3 & 2 \\
1 & 1 & 2
\end{array}\right]
$$

(a) Show that M has just two eigenvalues, 1 and 3 .
(b) Find an eigenvector corresponding to each eigenvalue.

The matrix M represents a linear transformation, T, of three dimensional space.
(c) Write down a vector equation of the line of invariant points of T.
(d) Write down a vector equation of another line which is invariant under T.

6 The planes Π_{1} and Π_{2} have equations

$$
\begin{aligned}
x-2 y+4 z & =0 \\
\text { and } 2 x+3 y+z & =0
\end{aligned}
$$

respectively.
(a) Show that the plane Π_{1} is perpendicular to the plane Π_{2}.
(b) Find the Cartesian equation of l, the line of intersection of the planes Π_{1} and Π_{2}. (3 marks)
(c) The line l meets the plane Π_{3} whose equation is

$$
\text { at the point A. } \quad 3 x-4 y+z=18
$$

Find:
(i) the coordinates of the point A ;
(ii) the acute angle between the line l and the plane Π_{3};
(iii) the direction cosines of l.

7 Given that

$$
\mathbf{b} \times \mathbf{c}=\mathbf{i} \quad \text { and } \quad \mathbf{c} \times \mathbf{a}=2 \mathbf{j}
$$

express

$$
(\mathbf{a}+\mathbf{b}) \times(\mathbf{a}+\mathbf{b}+5 \mathbf{c})
$$

in terms of i and j .
(6 marks)
8 A matrix M is defined by

$$
\mathbf{M}=\left[\begin{array}{rrr}
3 & 1 & 8 \\
2 & -1 & 5 \\
1 & 2 & a
\end{array}\right]
$$

(a) Find det M in terms of a.
(b) Find the value of a for which the matrix M is singular.
(c) Find M^{-1}, giving your answer in tems of a.
(d) Hence, or otherwise, solve

$$
\begin{aligned}
& 3 x+y+8 z=3 \\
& 2 x-y+5 z=0 \\
& x+2 y+2 z=2
\end{aligned}
$$

END OF QUESTIONS

\begin{tabular}{|c|c|c|c|c|}
\hline Question \& Solution \& Marks \& Total \& Comments \\
\hline \begin{tabular}{l}
1(a) \\
(b)
\end{tabular} \& \[
\begin{aligned}
\& {\left[\begin{array}{rr}
1 \& 1 \\
-1 \& 2
\end{array}\right]\left[\begin{array}{lll}
1 \& 0 \& 3 \\
0 \& 1 \& 1
\end{array}\right]} \\
\& =\left[\begin{array}{rrr}
1 \& 1 \& 4 \\
-1 \& 2 \& -1
\end{array}\right] \\
\& \mathbf{B}^{\mathrm{T}} \mathbf{A}^{\mathrm{T}}=(\mathbf{A B})^{\mathrm{T}}=\left[\begin{array}{rr}
1 \& -1 \\
1 \& 2 \\
4 \& -1
\end{array}\right]
\end{aligned}
\] \& \begin{tabular}{l}
M1A1 \\
M1 \\
A1,
\end{tabular} \& \[
2
\] \& \\
\hline \& Total \& \& 4 \& \\
\hline 2(a) \& \[
\left.\left.\begin{array}{l}
{\left[\begin{array}{r}
1 \\
-2 \\
1
\end{array}\right]} \\
\mathbf{c}-\mathbf{a} \\
\text { or } \\
{\left[\begin{array}{r}
-2 \\
3 \\
-1
\end{array}\right]} \\
\left\lvert\, \begin{array}{rrr}
\mathbf{b}-\mathbf{a} \\
-2 \& 3 \& -1 \\
1 \& -2 \& 1
\end{array}\right. \\
\text { seen } \\
\mathbf{j}+\mathbf{j}+\mathbf{k} \\
\text { or }
\end{array} \right\rvert\, \begin{array}{l}
1 \\
1 \\
1
\end{array}\right] .
\] \& \begin{tabular}{l}
B1 \\
M1 \\
A1A1 \\
M1 \\
M1A1
\end{tabular} \& 4

3 \& | Either |
| :--- |
| A1 1 correct (or all -ve) ft A1 all correct |
| $\frac{1}{2}$ prev. result $\sqrt{\mathrm{M} 1}$ |
| A1 cao allowing - ves in (a) |

\hline \& Total \& \& 7 \&

\hline 3(a) \& | A Shear |
| :--- |
| Parallel to y-axis $(1,0) \rightarrow(1,3)$ |
| B Rotation About x-axis of 45° |
| A y-axis |
| B x-axis | \& | M1 |
| :--- |
| A1 |
| B1 |
| M1 |
| A1 |
| A1 |
| B1 |
| B1 | \& 6

2 \& | e.g. (check suggested point) $(1,1) \rightarrow(1,4)$ not sf |
| :--- |
| Or "in $y-z$ plane" |
| Or $x=0,\left[\begin{array}{l}0 \\ \lambda\end{array}\right]$ |
| Or $y=z=0,\left[\begin{array}{l}\lambda \\ 0 \\ 0\end{array}\right]$ |

\hline \& Total \& \& 8 \&

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline Question \& Solution \& Marks \& Total \& Comments

\hline 4(a)

(b) \& \begin{tabular}{l}
$$
\begin{aligned}
& x^{2}(1-2)-x(1-4)+1(2-4) \\
& -x^{2}+3 x-2 \\
& -(x-1)(x-2)
\end{aligned}
$$

$\operatorname{det} \mathbf{A} \operatorname{det} \mathbf{B}$ used

$\operatorname{det} \mathbf{B}=x^{3}-9 x$
$$
\operatorname{det} \mathbf{A B}=-x(x-3)(x+3)(x-1)(x-2)
$$

 \&

M1A1

A1

A1 \checkmark

M1

M1A1

Al $\sqrt{ }$

\end{tabular} \& \[

4
\] \& If any other method is used, it must be complete.

\hline \& Total \& \& 8 \&

\hline 5(a) \& \& \& 6

5
5

1 \& | o.e. |
| :--- |
| ag |
| M1A1 for either |

\hline \& Total \& \& 13 \&

\hline
\end{tabular}

Question	Solution	Marks	Total	Comments
6(a)	$\begin{aligned} & {\left[\begin{array}{r} 1 \\ -2 \\ 4 \end{array}\right] \cdot\left[\begin{array}{l} 2 \\ 3 \\ 1 \end{array}\right]} \\ & =2-6+4=0 \end{aligned}$	M1A1	2	
(b)	$\left[\begin{array}{r} 1 \\ -2 \\ 4 \end{array}\right] \times\left[\begin{array}{l} 2 \\ 3 \\ 1 \end{array}\right]=\left[\begin{array}{r} -14 \\ 7 \\ 7 \end{array}\right]$	M1A1		
	$l \text { is } \frac{x}{-2}=\frac{y}{1}=\frac{z}{1}(=\lambda)$	A1 \checkmark	3	oe
(c)(i)	Substitute $\begin{gathered} x=-2 \lambda, y=\lambda, z=\lambda \text { into } \Pi_{3} \\ -6 \lambda-4 \lambda+\lambda=18 \\ \lambda=-2 \\ \therefore \mathrm{~A} \text { is }(4,-2,-2) \end{gathered}$	M1 A1 A1	3	
(ii)	$\cos \theta= \pm \frac{\left[\begin{array}{r} 3 \\ -4 \\ 1 \end{array}\right] \cdot\left[\begin{array}{r} -2 \\ 1 \\ 1 \end{array}\right]}{\sqrt{26} \sqrt{6}}$	M1		
(iii)	$\theta=43.9^{\circ}$ required angle is 46.1° direction cosines are $\left(-\frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right)$	$\begin{gathered} \text { A1 } \\ \text { A1 } \checkmark \\ \text { M1 } \\ \text { A2,1,0 } \end{gathered}$	3 3	
	Total		14	
7	Sensible expansion	M1		If $a^{2}+a b+5 a c \ldots$ used M0 unless some indication of understanding e.g. $a^{2}=0$. $b=j, a=2 i, c=k$ or similar 0 .
	Cancelling out $\mathbf{a} \times \mathbf{a}$ etc.	M1		
	Cancelling out $\mathbf{a} \times \mathbf{b}+\mathbf{b} \times \mathbf{a}$ $\mathbf{a} \times 5 \mathbf{c}+\mathbf{b} \times 5 \mathbf{c}$	M1		
	$5 \mathbf{i}-10 \mathbf{j}$	A1A1	6	All A's depend on M3
	Total		6	

MFP4 (cont)

Question	Solution	Marks	Total	Comments
8(a)	$3(-a-10)-(2 a-5)+8(4+1)$	M1A1		M attempt; A correct unsimplified
	$15-5 a$	A1	3	cao
(b)	$a=3$	B1J	1	$\mathrm{ft} \theta=0$
(c)	$\left[\begin{array}{ccc}-a-10 & 5-2 a & 5 \\ 16-a & 3 a-8 & -5 \\ 13 & 1 & -5\end{array}\right]$	M1 A1		Finding 2×2 determinants (co-factors) Any one correct row/column
	$\text { Use of } \frac{1}{\operatorname{det} \mathbf{M}}$	B1		ft (a) wrong or correct having stated again
	$\left[\begin{array}{lll} -a-10 & 16-a & 13 \end{array}\right]$	M1		Signs
	$\frac{1}{15-5 a}\left[\begin{array}{ccc}5-2 a & 3 a-8 & 1\end{array}\right]$	M1		Transpose
	$15-5 a\left[\begin{array}{ccc}5 & -5 & -5\end{array}\right]$	A1	6	cao
(d)	Realisation that $\mathrm{a}=2$	B1	1	
	$\frac{1}{5}\left[\begin{array}{rrr} -12 & 14 & 13 \\ 1 & -2 & 1 \\ 5 & -5 & -5 \end{array}\right]\left[\begin{array}{l} 3 \\ 0 \\ 2 \end{array}\right]$	M2		
	$\left[\begin{array}{r} -2 \\ 1 \\ 1 \end{array}\right]$	$\begin{gathered} \mathrm{A} 1 \sqrt{ } \sqrt{\mathrm{~A} 1} \end{gathered}$	4	A1 any one correct (ft) A1 all cao
Alt 1 to (d)	3 equations $\rightarrow 2 \rightarrow 1 \rightarrow$ Answers	M1		3 equations $\rightarrow 2$
		M1		2 equations $\rightarrow 1$
		A1		Any one correct
		A1		All cao
Alt 2 to(d)	Cramer's Rule $x=\frac{\Delta x}{\Delta}$ etc$x=-2, y=1, z=1$	M1		
		$\begin{gathered} \mathrm{A} 1 \mathrm{~A} 1 \\ \mathrm{~A} 1 \end{gathered}$		
Alt 3 to (d)	Gaussian Elimination	$\begin{aligned} & \text { M1A1 } \\ & \text { A1A1 } \end{aligned}$		
	Total		15	
	TOTAL		75	

