Teacher Support Materials 2008

Maths GCE

Paper Reference MS2B

Copyright © 2008 AQA and its licensors. All rights reserved
Permission to reproduce all copyrighted material has been applied for. In some cases, efforts to contact copyright holders have been unsuccessful and AQA will be happy to rectify any omissions if notified.

Question 1

It is thought that the incidence of asthma in children is associated with the volume of traffic in the area where they live.

Two surveys of children were conducted: one in an area where the volume of traffic was heavy and the other in an area where the volume of traffic was light.

For each area, the table shows the number of children in the survey who had asthma and the number who did not have asthma.

	Asthma	No asthma	Total
Heavy Traffic	52	58	110
Light Traffic	28	62	90
Total	80	120	200

(a) Use a χ^{2} test, at the 5% level of significance, to determine whether the incidence of asthma in children is associated with the volume of traffic in the area where they live. (8 marks)
(b) Comment on the number of children in the survey who had asthma, given that they lived in an area where the volume of traffic was heavy.

Student Response

Commentary

Hypotheses not stated in part (a).
Wrong conclusion 'No association' stated in part (a) but candidate still thought that they were justified in stating 'more than expected had asthma' in part (b).

Mark scheme

Question 2

(a) The number of telephone calls, X, received per hour for Dr Able may be modelled by a Poisson distribution with mean 6.

Determine $\mathrm{P}(X=8)$.
(b) The number of telephone calls, Y, received per hour for Dr Bracken may be modelled
by a Poisson distribution with mean λ and standard deviation 3 .
(i) Write down the value of λ.
(ii) Determine $\mathrm{P}(Y>\lambda)$.
(c) (i) Assuming that X and Y are independent Poisson variables, write down the distribution of the total number of telephone calls received per hour for Dr Able and Dr Bracken.
(ii) Determine the probability that a total of at most 20 telephone calls will be received during any one-hour period.
(iii) The total number of telephone calls received during each of 6 one-hour periods is to be recorded. Calculate the probability that a total of at least 21 telephone calls will be received during exactly 4 of these one-hour periods.

Student response

QR) $x \sim P_{0}(6)$
A) $P(X=B)$ using $P(X=x)=e^{-\lambda} \times \frac{\lambda^{x}}{x!}$

$$
\Rightarrow P(x=8)=e^{-6} \times \frac{C^{8}}{8!}
$$

$$
=0.1032577 \ldots
$$

$$
=0.103(3 s f)
$$

B] $V \sim P_{0}(9)$
1] $\lambda=3^{2}$

$$
\text { 1] } P(y>\lambda)
$$

$=p(y>9)_{y}$

$$
\begin{aligned}
& =1-P(Y \leqslant 9) \\
& =1-0.5874 \quad \text { (from fables) } \\
& =0.4126
\end{aligned}
$$

C] 1$]$

$$
\begin{aligned}
x+y & =T \\
& \Rightarrow T \sim P_{0}(6+9) \\
& \Rightarrow T \sim P_{0}(15)
\end{aligned}
$$

Commentary
Didn't use $\mathrm{B}(6, \mathrm{p})$ to work out solution in part (c)(iii).
Many in this part also did not realise that $\mathrm{P}(T$ at least 21$)=1-\mathrm{P}(T$ at most 20$)$.
Candidate Brendan Chadwick 7879 (centre: 43421) gained full marks on this question.
Mark Scheme

Question 3
Alan's company produces packets of crisps. The standard deviation of the weight of a packet of crisps is known to be 2.5 .

Alan believes that, due to the extra demand on the production line at a busy time of year, the mean weight of packets of crisps is not equal to the target weight of 34.5 grams .

In an experiment set up to investigate Alan's belief, the weights of a random sample of 50 packets of crisps were recorded. The mean weight of this sample is 35.1 grams.

Investigate Alan's belief, at the 5\% level of significance.

Student Response

Commentary

The candidate stated the Hypotheses incorrectly as
$\mathrm{H}_{0}: 34.5$ and $\mathrm{H}_{1}: \neq 34.5$ or $\mathrm{H}_{0}: \bar{x}=34.5$ and $\mathrm{H}_{1}: \bar{x} \neq 34.5^{\circ}$

Since the population standard deviation, σ, is given, $z= \pm 1.96$ must be used and not $t= \pm 2.009$ Also, the comments in context were often too positive in nature.

$\mathbf{3}$	$\mathrm{H}_{0}: \mu=34.5$	B1		
	$\mathrm{H}_{1}: \mu \neq 34.5$			
$z_{\text {crit }}= \pm 1.96$				
$z=\frac{35.1-34.5}{2.5} / \sqrt{50}$	B1ft			
	accept H_{0} Insufficient evidence, at 5\% level of significance, to suggest that the mean weight has changed.	E1	$\mathbf{6}$	Or.....to confirm Alan's belief
	Total		$\mathbf{6}$	

Question 4

The delay, in hours, of certain flights from Australia may be modelled by the continuous random variable T, having probability density function

$$
\mathrm{f}(t)= \begin{cases}\frac{2}{15} t & 0 \leq t \leq 3 \\ 1-\frac{1}{5} t & 3 \leq t \leq 5 \\ 0 & \text { otherwise }\end{cases}
$$

(a) Sketch the graph of f.
(b) Calculate:
(i) $\mathrm{P}(T \leq 2)$;
(ii) $\mathrm{P}(2<T<4)$.
(c) Determine $\mathrm{E}(T)$.

Student Response

4. a)

b) (i) $P(T \leqslant 2)$

$$
\int_{0}^{2} \frac{2}{15 t}=\left[\frac{2 t^{2}}{30}\right]_{0}^{2}=\frac{8}{30}=\frac{4}{15} / 2
$$

(ii)

$$
\begin{aligned}
& P(2<T<4)=P(T \leqslant 3)-(T \leqslant 2) \\
& =\int_{0}^{3} \frac{2}{15 t}=\left[\frac{2 t^{2}}{30}\right]_{0}^{3}=\frac{18}{30}=\frac{9}{15} A_{0} \\
& \frac{9}{15}-\frac{4}{15}=\frac{5}{15}=\frac{1}{3}
\end{aligned}
$$

C) $E(T)$

$$
\begin{aligned}
& \frac{9}{15}+\int_{3}^{5} 1-\frac{1}{5} t d x X \\
& \frac{9}{15}+\left[t-\frac{t^{2}}{10}\right]_{3}^{5}=\frac{9}{5}+\left(5-\frac{25}{10}\right. \\
&-3-9 / 10)
\end{aligned} B_{0}
$$

Commentary

Many candidates, in part(b)(ii), thought incorrectly that $\mathrm{P}(2<T<4)=\mathrm{P}(T \leq 3)-\mathrm{P}(T \leq 2)$.
Others, treated this as a discrete distribution throughout the question.

Mark Scheme

4(a)				
	${ }^{0.5}{ }^{\text {f(t) }}$			
	-			B1 line segment on 0-3
	0.4 \square			B1 line segment on 3-5
	$0.3 \bigcirc$	B1		B1 scales
	0.2 -			(0.4 vertical; 0-5 horizontal)
	0.2	B1		
		B1	3	
	$1 \begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6\end{array}$			
(b)(i)	$\mathrm{P}(T \leq 2)=\frac{1}{2} \times 2 \times \frac{4}{15}$	M1		
	$=\frac{4}{15}$	A1	2	(0.267)
(ii)	$\mathrm{P}(2<T<4)$			
	$=1-(\mathrm{P}(T<2)+\mathrm{P}(T>4))$	M1		For $\mathrm{P}(T>4)=\frac{1}{10}$
	$=1-\left(\frac{4}{15}+\frac{1}{2} \times \frac{1}{5}\right)$	A1		$\frac{1}{2} d\left[\left(f_{1}+f_{4}\right)+2 f_{3}\right]$
	$=1-\frac{4}{15}-\frac{1}{10}$			$f_{2}=\frac{4}{15} ; f_{4}=\frac{1}{5} ; f_{3}=\frac{2}{5}$
	$=\frac{19}{30}$	A1	3	$\begin{aligned} & d=1 \\ & (0.633) \end{aligned}$
(c)				
	$\mathrm{E}(T)=\int_{0}^{3} \frac{2}{15} t^{2} d t+\int_{3}^{5} t\left(1-\frac{1}{5} t\right) \mathrm{dt}$	M1		Both
	$=\left[\frac{2}{45} t^{3}\right]_{0}^{3}+\left[\frac{1}{2} t^{2}-\frac{1}{15} t^{3}\right]_{3}^{5}$	B1B1		
	$=\frac{6}{5}+\frac{25}{6}-\frac{27}{10}$			
	$=2 \frac{2}{3}$	A1	4	oe
	Total		12	

Question 5

The weight of fat in a digestive biscuit is known to be normally distributed.
Pat conducted an experiment in which she measured the weight of fat, x grams, in each of a random sample of 10 digestive biscuits, with the following results:

$$
\sum x=31.9 \quad \text { and } \quad \sum(x-\bar{x})^{2}=1.849
$$

(a)(i) Construct a 99% confidence interval for the mean weight of fat in digestive biscuits.
(5 mark
(ii) Comment on a claim that the mean weight of fat in digestive biscuits is 3.5 grams.
(b) If 200 such 99% confidence intervals were constructed, how many would you expect not to contain the population mean?

Student Response

Commentary

Many candidates couldn't calculate the correct value of s. They also used z-values
(usually $z=2.5758$) instead of the required t-value, $t=3.250$.

Mark Scheme

5(a)(i)	$\begin{aligned} & \bar{x}=3.19 \text { and } s^{2}=\frac{1.849}{9}=0.2054 \\ & t_{9}=3.250 \end{aligned}$ 99\% Confidence Interval: $\begin{aligned} & 3.19 \pm 3.250 \times \frac{\sqrt{0.2054}}{\sqrt{10}} \\ = & 3.19 \pm 0.4658 \\ = & (2.72,3.66) \end{aligned}$ Reasonable claim with 3.5 within the 99% confidence interval $0.01 \times 200=2$	B1 B1 M1 A1ft A1 B1 E1 B1	5 2 1	Both $(s=0.453)$ (2.72 to 2.73; 3.65 to 3.66) Dep correct CI in (a)(i)
	Total		8	

Question 6
The management of the Wellfit gym claims that the mean cholesterol level of those members who have held membership of the gym for more than one year is 3.8 .

A local doctor believes that the management's claim is too low and investigates by measuring the cholesterol levels of a random sample of 7 such members of the Wellfit gym, with the following results:
4.2
4.3
3.9
3.8
3.6
4.8
4.1

Is there evidence, at the 5% level of significance, to justify the doctor's belief that the mean cholesterol level is greater than the management's claim?
State any assumption that you make.

Student Response

Commentary

The assumption asked for was often omitted or stated incorrectly.
In the second example the candidate stated the Alternative hypothesis incorrectly.
As for question 3, the hypotheses were often stated incorrectly.

Mark Scheme

Question 7

a) The number of text messages, N, sent by Peter each month on his mobile phone never exceeds 40.

When $0 \leq N \leq 10$ he is charged for 5 messages.
When $10<N \leq 20$ he is charged for 15 messages.
When $20<N \leq 30$ he is charged for 25 messages.
When $30<N \leq 40$ he is charged for 35 messages.
The number of text messages, Y, that Peter is charged for each month has the following probability distribution:

\boldsymbol{y}	5	15	25	35
$\mathbf{P}(\boldsymbol{Y}=\boldsymbol{y})$	0.1	0.2	0.3	0.4

(i) Calculate the mean and standard deviation of Y.
(ii) The Goodtime phone company makes a total charge for text messages, C pence, each month given by:

$$
C=10 Y+5
$$

Calculate $\mathrm{E}(C)$.
(b) The number of text messages, X, sent by Joanne each month on her mobile phone is such that:

$$
\mathrm{E}(X)=8.35 \quad \text { and } \quad \mathrm{E}\left(X^{2}\right)=75.25
$$

The Newtime phone company makes a total charge for text messages, T pence, each month given by

$$
T=0.4 X+250
$$

Calculate $\operatorname{Var}(T)$.

7a) i)

$$
\begin{aligned}
E(x) & =(5 \times 0.1)+(15 \times 0.2)+(25 \times 0.3)+(35 \times 0.4) \\
& =0.5+3+7.5+14 \\
& =25 \\
E\left(x^{2}\right) & =(25 \times 0.1)+(225 \times 0.2)+(625 \times 0.3)+(1225 \times 0.4) \\
& =2.5+45+187.5+490 \\
& =723
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Var}(x) & =E\left(x^{2}\right)-[E(x)]^{2} \\
& =723-625 \\
& =98 \\
\sigma & =\sqrt{98} \\
& =9.899 \quad \text { (4sf.) }
\end{aligned}
$$

ii) $C=10 y+5$

$$
\begin{aligned}
\Rightarrow E(c) & =(55 \times 0.1)+(155 \times 0.2)+(255 \times 0.3)+(355 \times 0.4) \\
& =5.5+31+76.5+142 \\
& =255 .
\end{aligned}
$$

b)

$$
\begin{aligned}
E(T) & =0.4(8.35)+250 \\
& =253.34
\end{aligned}
$$

3 E($\left.x_{2}^{2}\right) \geq$

$$
\begin{aligned}
T^{2} & =(0.4 x+250)(0.4 x+250) \\
& =0.16 x^{2}+200 x+62500
\end{aligned}
$$

B

$$
\begin{aligned}
E\left(T^{2}\right) & =0.18(8.800 .16(75.25)+200(8.35)+6250 \\
& =64182.04
\end{aligned}
$$

m 病
A1.

$$
8
$$

$$
\begin{aligned}
& =64182.04-64181.1556 \\
& =0.8844
\end{aligned}
$$

7a)

$$
\text { i) } \begin{aligned}
E(y)= & (5 \times 0.1)+(15 \times 0.2)+12 . \\
& +(35 \times 0.4)^{2} \\
= & 0.5+3+7.5+ \\
= & 25
\end{aligned}
$$

$$
\left.\operatorname{Var}(y)=E\left(y^{2}\right)-E(y)\right]^{2}
$$

$$
=725 .
$$

$$
\therefore \operatorname{Var}(y)=725-25^{2}
$$

$$
=100
$$

ii)

$$
\begin{aligned}
E(c) & =10 \times E(y)+5 \\
& =25 S \text { pence. }
\end{aligned}
$$

b)

$$
\begin{align*}
\operatorname{Var}(x) & =75.25-8.35^{2} \\
& =5.5275 \\
\operatorname{Var}(T) & =0.4^{2} \times \operatorname{var}(x) \tag{4}\\
& =0.4^{2} \times 5.5275=0.8844 \text { (8) }
\end{align*}
$$

Commentary
A very well attempted question but some candidates (2019 Cand A), in part (a)(i) failed to evaluate the requested standard deviation, having correctly found the variance.

Some candidates, (1345 Cans b), in part (b) attempted to evaluate $\operatorname{Var}(T)$ by using $\mathrm{E}\left(T^{2}\right)-\mathrm{E}(T)^{2}$ but were unable to establish the correct value for $\mathrm{E}\left(T^{2}\right)=64182.04$ having found $\mathrm{E}(T)=253.34$ correctly. The easiest and most efficient way of doing this question is shown in the mark scheme.

Question 8

The continuous random variable X has cumulative distribution function

$$
\mathrm{F}(x)= \begin{cases}0 & x<-1 \\ \frac{x+1}{k+1} & -1 \leq x \leq k \\ 1 & x>k\end{cases}
$$

where k is a positive constant.
(a) Find, in terms of k, an expression for $\mathrm{P}(X<0)$.
(b) Determine an expression, in terms of k, for the lower quartile, q_{1}.
(c) Show that the probability density function of X is defined by

$$
\mathrm{f}(x)= \begin{cases}\frac{1}{k+1} & -1 \leq x \leq k \tag{2marks}\\ 0 & \text { otherwise }\end{cases}
$$

(d) Given that $k=11$:
(i) sketch the graph of f ;
(ii) determine $\mathrm{E}(X)$ and $\operatorname{Var}(X)$;
(iii) show that $\mathrm{P}\left(q_{1}<X<\mathrm{E}(X)\right)=0.25$.

Student Response
80) $\frac{0+1}{k+1}=\frac{1}{k+1}=P(x<0)$
b) $\frac{x+1}{k+1}=0.25$

$$
x+1=0.25(k+1)^{\prime}
$$

$$
\begin{aligned}
& x+1=0.25 k+0.25 \\
& x+0.75=0.25 k \\
& \frac{x+0.75}{0.25}=k
\end{aligned}
$$

c) $\frac{p+1}{k+1}=\frac{1}{k+1}$ * more req ${ }^{\alpha}$.
d) i)

-1	0
0	1
1	$1 / 2$
2	$1 / 3$
3	$1 / 4$
4	$1 / 5$
5	116
0	177
7	118
8	$1 / 9$
9	110
10	111
11	$1 / 2$

4	$1 / 5$
5	110
0	17
7	18
8	$1 / 9$
9	110
10	1112
11	

$$
\begin{aligned}
& \text { ii) } E(x)=\int x f x=\int x(k+1)^{-1}=\left[\left.\frac{x^{2}\left(\frac{(k+1)^{-2}}{-2}\right.}{} \right\rvert\, X\right. \\
& B \operatorname{var}(x)=\int x^{2} f x=\int x^{2}(k+1)^{-1}=\left[\frac{x^{3}}{3} \frac{(k+1)^{-2}}{-2}\right]-\left[\frac{x^{2}}{2} \frac{(k+1)^{-2}}{-2}\right]
\end{aligned}
$$

Bo $\frac{x^{3}}{3}-\frac{x^{2}}{2}=\frac{2 x^{3}}{6}-\frac{3 x^{2}}{6}$
iii) $\frac{x^{3}-x^{2}}{3}$

Commentary

In part (b), many found an expression for k interms of x, instead of q_{1} in terms of k.
Also many used calculus to find their answers to part (d)(ii) instead of the formulae stated in the booklet provided.

Mark Scheme

8(a)	$\begin{aligned} \mathrm{P}(X<0) & =\mathrm{F}(0) \\ & =\frac{1}{k+1} \end{aligned}$	M1 A1	2	
(b)	$\begin{aligned} \left(q_{1}+1\right) \times \frac{1}{(k+1)} & =\frac{1}{4} \\ q_{1}+1 & =\frac{1}{4}(k+1) \\ q_{1} & =\frac{1}{4}(k+1)-1 \end{aligned}$	M1 A1 A1	3	Alternative (from a sketch) $\begin{aligned} & q_{1}=-1+\frac{1}{4}(k+1) \\ & q_{1}=\frac{1}{4}(k-3) \end{aligned}$ oe
(c)	$\left.\begin{array}{rl} \mathrm{f}(x) & =\frac{d}{d x}(\mathrm{~F}(x)) \\ & =\frac{1}{k+1} \times \frac{d}{d x}(x+1) \\ = & \frac{1}{k+1}-1 \leq x \leq k \\ = & 0 \quad \text { otherwise } \end{array}\right\}$	M1 A1	2	Use of $\frac{1}{k+1}$ clearly deduced AG
(d)(i)	$\begin{aligned} & k=11 \\ & \Rightarrow \quad \mathrm{f}(x)= \begin{cases}\frac{1}{12} & -1 \leq x \leq 11 \\ 0 & \text { otherwise }\end{cases} \end{aligned}$ Rectangular Distribution	B1 B1	2	horizontal line on $[-1,11]$ at $\quad \mathrm{f}=\frac{1}{12}$
(ii)	$\begin{aligned} & \mathrm{E}(X)=\frac{1}{2}(-1+11)=5 \\ & \operatorname{Var}(X)=\frac{1}{12}(11--1)^{2}=12 \end{aligned}$	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	2	

(iii)	$\mathrm{P}\left(q_{1}<X<\mathrm{E}(X)\right)$ $=\mathrm{P}(2<X<5)$ $=(5-2) \times \frac{1}{12}$ $=\frac{1}{4}$	M 1		
		A 1	2	AG

