General Certificate of Education January 2008 Advanced Level Examination

MATHEMATICS Unit Further Pure 4

MFP4

Wednesday 30 January 2008 9.00 am to 10.30 am

For this paper you must have:

- a 12-page answer book
- the blue AQA booklet of formulae and statistical tables.

You may use a graphics calculator.

Time allowed: 1 hour 30 minutes

Instructions

- Use blue or black ink or ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The *Examining Body* for this paper is AQA. The *Paper Reference* is MFP4.
- Answer all questions.
- Show all necessary working; otherwise marks for method may be lost.

Information

- The maximum mark for this paper is 75.
- The marks for questions are shown in brackets.

Advice

• Unless stated otherwise, you may quote formulae, without proof, from the booklet.

Answer all questions.

1 Give a full geometrical description of the transformation represented by each of the following matrices:

(a)	$\begin{bmatrix} 0.8 & 0 & -0.6 \\ 0 & 1 & 0 \\ 0.6 & 0 & 0.8 \end{bmatrix};$	(3 marks)
(b)	$\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$	(2 marks)

2 It is given that $\mathbf{a} = 2\mathbf{i} + 3\mathbf{j} + \mathbf{k}$, $\mathbf{b} = \mathbf{i} + \mathbf{j} - 5\mathbf{k}$ and $\mathbf{c} = \mathbf{i} + 4\mathbf{j} + 28\mathbf{k}$.

(a) Determine:

(i) **a**.**b**; (1 mark)

(ii)
$$\mathbf{a} \times \mathbf{b}$$
; (2 marks)

(iii)
$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})$$
. (2 marks)

- (b) Describe the geometrical relationship between the vectors:
 - (i) \mathbf{a} , \mathbf{b} and $\mathbf{a} \times \mathbf{b}$; (1 mark)
 - (ii) **a**, **b** and **c**. (1 mark)

3 A shear S is represented by the matrix $\mathbf{A} = \begin{bmatrix} p & q \\ -q & r \end{bmatrix}$, where *p*, *q* and *r* are constants.

(a) By considering one of the geometrical properties of a shear, explain why $pr + q^2 = 1$. (2 marks)

- (b) Given that p = 4 and that the image of the point (-1, 2) under S is (2, -1), find:
 - (i) the value of q and the value of r; (3 marks)
 - (ii) the equation of the line of invariant points of S. (3 marks)

- 4 The matrix T has eigenvalues 2 and -2, with corresponding eigenvectors $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} 2 \\ 3 \end{bmatrix}$ respectively.
 - (a) Given that $\mathbf{T} = \mathbf{U} \mathbf{D} \mathbf{U}^{-1}$, where **D** is a diagonal matrix, write down suitable matrices U, **D** and \mathbf{U}^{-1} . (3 marks)
 - (b) Hence prove that, for all even positive integers *n*,

$$\mathbf{T}^n = \mathbf{f}(n) \mathbf{I}$$

where f(n) is a function of *n*, and I is the 2 × 2 identity matrix. (5 marks)

5 A system of equations is given by

х	+	3y	+	5 <i>z</i>	=	-2
3 <i>x</i>	—	4y	+	2z	=	7
ax	+	11 <i>y</i>	+	13 <i>z</i>	=	b

where a and b are constants.

- (a) Find the unique solution of the system in the case when a = 3 and b = 2. (5 marks)
- (b) (i) Determine the value of *a* for which the system does not have a unique solution. (3 marks)
 - (ii) For this value of *a*, find the value of *b* such that the system of equations is consistent. (4 marks)

Turn over for the next question

(a) The line *l* has equation $\mathbf{r} = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} + \lambda \begin{bmatrix} 3 \\ 2 \\ 6 \end{bmatrix}$. 6

> Write down a vector equation for *l* in the form $(\mathbf{r} - \mathbf{a}) \times \mathbf{b} = \mathbf{0}$. (i) (1 mark)

- Write down cartesian equations for l. (2 marks) (ii)
- Find the direction cosines of l and explain, geometrically, what these represent. (iii) (3 marks)
- The plane Π has equation $\mathbf{r} = \begin{bmatrix} 7 \\ 5 \\ 1 \end{bmatrix} + \lambda \begin{bmatrix} 4 \\ 3 \\ 2 \end{bmatrix} + \mu \begin{bmatrix} 1 \\ 1 \\ 3 \end{bmatrix}$. (b)

Find an equation for Π in the form $\mathbf{r} \cdot \mathbf{n} = d$. (i) (4 marks)

- State the geometrical significance of the value of d in this case. (1 mark)
- Determine, to the nearest 0.1°, the angle between l and Π . (4 marks) (c)
- The non-singular matrix $\mathbf{M} = \begin{bmatrix} 2 & -1 & 1 \\ 1 & 0 & 1 \\ 1 & -1 & 2 \end{bmatrix}$. 7
 - Show that (a) (i)

(ii)

$$\mathbf{M}^2 + 2\mathbf{I} = k\mathbf{M}$$

for some integer k to be determined.

(ii) By multiplying the equation in part (a)(i) by M^{-1} , show that

$$\mathbf{M}^{-1} = a\mathbf{M} + b\mathbf{I}$$

for constants a and b to be found.

- (b) Determine the characteristic equation of M and show that M has a repeated (i) eigenvalue, 1, and another eigenvalue, 2. (6 marks)
 - Give a full set of eigenvectors for each of these eigenvalues. (5 marks) (ii)
 - (iii) State the geometrical significance of each set of eigenvectors in relation to the transformation with matrix M. (3 marks)

END OF QUESTIONS

Copyright © 2008 AQA and its licensors. All rights reserved.

(3 marks)

(3 marks)