

General Certificate of Education

Mathematics 6360

MPC2 Pure Core 2

Mark Scheme

2008 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2008 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and abbreviations used in marking

M	mark is for method		
m or dM	mark is dependent on one or more M marks and is for method		
A	mark is dependent on M or m marks and is for accuracy		
B	mark is independent of M or m marks and is for method and accuracy		
E	mark is for explanation		
\checkmark or ft or F	follow through from previous incorrect result	MC	mis-copy
CAO	correct answer only	MR	mis-read
CSO	correct solution only	RA	required accuracy
AWFW	anything which falls within	FW	further work
AWRT	anything which rounds to	ISW	ignore subsequent work
ACF	any correct form	FIW	from incorrect work
AG	answer given	BOD	given benefit of doubt
SC	special case	WR	work replaced by candidate
OE	or equivalent	FB	formulae book
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme
$-x$ EE	deduct x marks for each error	G	graph
NMS	no method shown	c	candidate
PI	possibly implied	sf	significant figure(s)
SCA	substantially correct approach	dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

MPC2

Q	Solution	Marks	Total	Comments
1(a)	$\begin{aligned} & \text { Area of sector }=\frac{1}{2} r^{2} \theta=\frac{1}{2} \times 6^{2} \times \theta \\ & 6 \times 3=2 \times \frac{1}{2} \times 6^{2} \times \theta \\ & 36 \theta=18 \Rightarrow \theta=0.5 \\ & \text { Arc }=6 \theta ; \\ & \cdots=3 \mathrm{~cm} \\ & \Rightarrow \text { Perimeter }=12+\operatorname{arc}=15 \mathrm{~cm} \end{aligned}$	M1 m1 A1 M1 A1 A1F	3 3 3 	$\frac{1}{2} r^{2} \theta \text { seen or used }$ OE Forming equation AG $r \theta$ seen or used PI by a correct perimeter Ft wrong evaluation of 6θ. Condone missing/wrong units throughout the question.
	Total		6	
2(a)	$(d)=7$	B1	1	7
(b)	$\begin{aligned} & \left(101^{\text {st }} \text { term }\right)=a+(101-1) d \\ & \ldots \ldots \ldots \ldots \ldots=51+100(7)=751 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1F } \end{aligned}$	2	Ft on c's answer for d. NMS/rep. addn., give both marks for ' 751 '. SC if M0, award B1 for $7 n+44 \mathrm{OE}$
(c)	$\begin{aligned} & S_{n}=\frac{100}{2}[751+1444] \text { or } \\ & S_{n}=\frac{100}{2}[2 \times 751+(100-1) 7] \end{aligned}$	M1		Formula for $\left\{\mathrm{S}_{n}\right\}$ with [any $\mathbf{3}$ of $a=\mathrm{c}$'s 751 (condoning '751’ $\pm d$) or $d=$ c's 7 or $n=100$ or $l=1444$ substituted] or $\left[\mathrm{S}_{200}-\mathrm{S}_{k}\right.$ with $k=100$, (condoning $k=99$ or 101) stated/used with correct ft substitution in S_{200} or S_{k}]
	$=109750$	A1	2	
	Total		5	
3(a)	$\frac{B C}{\sin 72}=\frac{18.7}{\sin 50} \quad[=24.4 \ldots .]$	M1		Use of the sine rule
	$B C=\frac{18.7 \sin 72}{\sin 50}$	m1		Rearrangement
	$(B C)=23.21(6 .).\{=23.2$ to nearest 0.1 cm$\}$	A1	3	AG Need $>1 \mathrm{dp}$ if using cm eg 23.21 or 23.22; at least 1 dp if using mm .
(b)	Angle $C=180^{\circ}-\left(50^{\circ}+72^{\circ}\right)=58^{\circ}$	M1		Valid method to find either angle C (PI eg by $\sin C=0.848(04$..)) or side $A B$
	Area of triangle $=0.5 \times 18.7 \times 23.2 . . \times \sin C$	M1		OE eg $0.5 \times 18.7 \times A B \times \sin 72^{\circ}$
	$\ldots \ldots . .184 \mathrm{~cm}^{2}$	A1	3	Accept 183.8 to 184.2 Condone missing/wrong units
	Total		6	

MPC2 (cont)

MPC2 (cont)

Q	Solution	Marks	Total	Comments
6(a)(i)	$(1+x)^{3}=1+3 x+3 x^{2}+x^{3}$	M1		Any valid method to expand ($1+x)^{3}$ fully
		A1	2	
(ii)	$(1+x)^{4}=1+4 x+6 x^{2}+4 x^{3}+x^{4}$	M1		Any valid method to expand $(1+x)^{4}$ fully
		A1	2	
(b)(i)	$(1+4 x)^{3}=1+3(4 x)+3(4 x)^{2}+(4 x)^{3}$	M1		
	$(1+4 x)^{3}=1+12 x+48 x^{2}+64 x^{3}$	A1 \checkmark	2	Ft on one numerical slip in (a)(i)
(ii)	$(1+3 x)^{4}$			
	$=1+4(3 x)+6(3 x)^{2}+4(3 x)^{3}+(3 x)^{4}$	M1		
	$=1+12 x+54 x^{2}+108 x^{3}+81 x^{4}$	A1 \checkmark	2	Ft on one numerical slip in (a)(ii)
(c)	$(1+3 x)^{4}-(1+4 x)^{3}=1+12 x+54 x^{2}+$			
	$108 x^{3}+81 x^{4}-\left(1+12 x+48 x^{2}+64 x^{3}\right)$	M1		Subtracts the answers to (b) with correct number of terms and combines at least two pairs of like terms.
	$=6 x 2+44 x 3+81 \times 4$	A1	2	CAO
				SC: If no attempt in (b) but full expansions given in working for (c), mark retrospectively.
	Total		10	
7(a)	$x=8$	B1	1	No clear log law errors seen. Condone answer left as $\frac{16}{2}$
(b)	$\begin{aligned} & \log _{a} y=\log _{a} 3^{2}+\log _{a} 4+1 \\ & \log _{a} y=\log _{a}\left(3^{2} \times 4\right)+1 \end{aligned}$	M1		One law of logs used correctly
		M1		Either a second law of logs used correctly
	$\log _{a} y=\log _{a}\left(3^{2} \times 4\right)+\log _{a} a=\log _{a} 36 a$			
	$\Rightarrow y=36 a$	A1	3	CSO
	Total		4	

MPC2 (cont)

Q	Solution	Marks	Total	Comments
8(a)	${ }^{y} \uparrow \quad /$	B1		Shape (graph must clearly go below the intersection pt.). Condone if x-axis is a tangent
		B1	2	Only intersection with y-axis at $(0,1)$ stated/indicated ... (accept 1 on y-axis as equivalent) 0
(b)(i)	Stretch (I) in x-direction (II) scale factor 0.5 (III)	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	$\operatorname{Need}(\mathbf{I})$ \& one of (II),(III) M0 if >1 transformation
(ii)	Translation;	B1;		Must be 'Translation' or 'translate(d)' for $1^{\text {st }} \mathrm{B}$ mark
	$\left[\begin{array}{c} -1 \\ 0 \end{array}\right]$	B1	2	Accept full equivalent to vector in words provided linked to 'translation/ move/shift' and negative x-direction (Note: B0 B1 is possible)
(c)(i)	ALTn: Stretch (I) in y-direction (II) scale factor 3 (III) $\begin{aligned} & 9^{x}=\left(3^{2}\right)^{x}=3^{2 x}=\left(3^{x}\right)^{2}=Y^{2} ; \\ & 3^{x+1}=3^{x} \times 3^{1}=3 Y \\ & 9^{x}-3^{x+1}+2=0 \Rightarrow Y^{2}-3 Y+2=0 \end{aligned}$	M1		[Mark the alternative as in (b)(i).] Justifying either $9^{x}=Y^{2}$ or $3^{x+1}=3 Y$
	$\Rightarrow(Y-1)(Y-2)=0$	A1	2	AG
(ii)	$Y=1 \Rightarrow 3^{x}=1 \Rightarrow x=0$	B1		AG (Accept direct substitution if convinced)
	$\begin{aligned} & Y=2 \Rightarrow 3^{x}=2 \\ & \log _{10} 3^{x}=\log _{10} 2 \end{aligned}$	M1		Takes logs of both, PI by 'correct'
	$\log _{10} 3^{n}=\log _{10} 2$	M1		value(s) later. or $x=\log _{3} 2$ seen
	$x \log _{10} 3=\log _{10} 2$	m1		Use of $\log 3^{x}=x \log 3$ or $\log _{3} 2=\frac{\lg 2}{\lg 3}$ OE (PI by $\log _{3} 2=0.630$ or 0.631 or better)
	$x=\frac{\lg 2}{\lg 3}=0.630929 \ldots=0.6309 \text { to } 4 \mathrm{dp}$	A1	4	Must show that logarithms have been used otherwise $0 / 3$
	Total		12	

MPC2 (cont)

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments

\hline \multirow[t]{5}{*}{9(a)} \& $$
\begin{aligned}
& \frac{3+\sin ^{2} \theta}{\cos \theta-2}=3 \cos \theta \\
& \Rightarrow \frac{3+\left(1-\cos ^{2} \theta\right)}{\cos \theta-2}=3 \cos \theta
\end{aligned}
$$
$$
\begin{aligned}
& \Rightarrow \frac{4-\cos ^{2} \theta}{\cos \theta-2}=3 \cos \theta \\
& \Rightarrow \frac{(2-\cos \theta)(2+\cos \theta)}{\cos \theta-2}=3 \cos \theta
\end{aligned}
$$ \& M1

m1 \& \& | $\cos ^{2} \theta+\sin ^{2} \theta=1$ stated or used [If cand starts with $\cos \theta=-1 / 2$ and gets $\sin ^{2} \theta=3 / 4$ without explicitly finding value for θ and verifies $1^{\text {st }}$ equation is true, award M1moA0] |
| :--- |
| Difference of two squares |
| or division (PI by next line) |

\hline \& | $\begin{aligned} & \Rightarrow-1(2+\cos \theta)=3 \cos \theta \\ & \Rightarrow-2=4 \cos \theta \Rightarrow \cos \theta=-\frac{1}{2} \end{aligned}$ |
| :--- |
| Alternative for (a) | \& | A1 |
| :--- |
| A1 | \& 4 \& CSO AG

\hline \& $$
\begin{aligned}
& 3+1-\cos ^{2} \theta=3 \cos ^{2} \theta-6 \cos \theta \\
& (4 \cos \theta+2)(\cos \theta-2)=0
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \text { (M1) } \\
& \text { (m1) }
\end{aligned}
$$

\] \& \& | $\cos ^{2} \theta+\sin ^{2} \theta=1$ |
| :--- |
| Factorising or formula |

\hline \& $$
\cos \theta-2 \neq 0
$$ \& (A1) \& \& Indicates rejection of $\cos \theta=2$

\hline \& $$
\Rightarrow 4 \cos \theta=-2 \Rightarrow \cos \theta=-\frac{1}{2}
$$ \& (A1) \& \& AG Be convinced

\hline \multirow[t]{2}{*}{(b)} \& \[
$$
\begin{aligned}
& \theta=3 x \Rightarrow \cos 3 x=-\frac{1}{2} \\
& \cos ^{-1}\left(-\frac{1}{2}\right)=120^{\circ} \\
& 3 x=120^{\circ}, 240^{\circ}, 480^{\circ}, \ldots
\end{aligned}
$$

\] \& | M1 |
| :--- |
| m1 | \& \& | Uses part (a) to reach either $\cos 3 x=-0.5$ or $\cos 3 x=0.5$ |
| :--- |
| Or $\cos ^{-1}(0.5)=60^{\circ}$ Condone radians here |

\hline \& $x=40^{\circ}, 80^{\circ}, 160^{\circ}$ \& A2,1,0 \& 4 \& | A1 for at least two correct. |
| :--- |
| If >3 solutions in the interval $0^{\circ}<x<180^{\circ}$, deduct 1 mark from any A marks for each extra solution. |
| Deduct 1 mark from any A marks if answers in radians. Ignore extra values outside the given interval. |

\hline \& Total \& \& 8 \&

\hline \& TOTAL \& \& 75 \&

\hline
\end{tabular}

