General Certificate of Education
June 2007
Advanced Level Examination

MATHEMATICS

Unit Statistics 4

Monday 18 June 20079.00 am to 10.30 am

For this paper you must have:

- an 8-page answer book
- the blue AQA booklet of formulae and statistical tables.

You may use a graphics calculator.

Time allowed: 1 hour 30 minutes

Instructions

- Use blue or black ink or ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The Examining Body for this paper is AQA. The Paper Reference is MS04.
- Answer all questions.
- Show all necessary working; otherwise marks for method may be lost.
- The final answer to questions requiring the use of tables or calculators should normally be given to three significant figures.

Information

- The maximum mark for this paper is 75 .
- The marks for questions are shown in brackets.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.

Answer all questions.

1 The headteacher of a school believes that the standard deviation of the annual number of new pupils joining the school is 10 .

A statistician on the staff collects the following data on the number of new pupils joining the school during each of a sample of ten years.

124	123	139	136	128	125	128	133	131	133

Investigate, at the 5% level of significance, the headteacher's belief. Assume that these data may be regarded as a random sample from a normal distribution.
(8 marks)

2 The discrete random variable X has a geometric distribution with parameter p.
(a) Given that the value of the mean is 4 times that of the variance, find the value of p.
(b) Hence determine $\mathrm{P}(X>4 \mid X>2)$.
(4 marks)

3 The assessment of a physics course has two components: a written examination and a practical test. Each component has a maximum mark of 75 . The marks achieved by 10 students in each component are shown in the table.

Student	A	B	C	D	E	F	G	H	I	J
Written Mark	35	47	54	55	43	48	41	59	47	31
Practical Mark	57	63	47	72	73	27	39	60	53	22

(a) Investigate, using a paired t-test and the 5% level of significance, whether the mean mark in the written examination is less than that in the practical test.
(b) State two assumptions that were necessary in order to carry out the test in part (a).
(2 marks)

4 (a) A continuous random variable X has probability density function

$$
\mathrm{f}(x)=\lambda \mathrm{e}^{-\lambda x} \text { for } x \geqslant 0
$$

Prove that the mean value of X is $\frac{1}{\lambda}$.
(b) The lifetime of a component in a machine is T hours, where T has probability density function

$$
\mathrm{f}(t)=\frac{1}{a} \mathrm{e}^{-\frac{t}{a}} \text { for } t \geqslant 0
$$

The mean lifetime of these components is known to be 62.5 hours.
(i) Find the value of $\frac{1}{a}$.
(ii) Calculate the probability that a component will last for at least 80 hours.
(4 marks)
(iii) Given that a component has lasted for 80 hours, find the probability that it will last for a further 20 hours.

5 One hundred 1-millilitre samples of water were taken at random and the number of bacteria in each sample was counted. The results are shown in the table.

Number of bacteria	0	1	2	3	4	5	6	7
Frequency	7	15	27	25	11	10	3	2

(a) For these data, show that the mean number of bacteria per 1-millilitre of water is 2.7 .
(b) Hence, using a χ^{2} goodness of fit test with the 10% level of significance, investigate whether the number of bacteria per 1-millilitre of water can be modelled by a Poisson distribution.

Turn over for the next question

6 A random variable X is distributed with mean μ and variance σ^{2}. Three independent observations, X_{1}, X_{2} and X_{3}, are taken on X.

The combined statistic

$$
T=a X_{1}+b X_{2}+c X_{3}
$$

where a, b and c are constants, is used as an estimator for μ.
(a) Show that, if T is an unbiased estimator for μ, then $a+b+c=1$.
(b) Two unbiased estimators for μ are T_{1} and T_{2}, defined by

$$
\begin{aligned}
& T_{1}=\frac{1}{3} X_{1}+\frac{1}{2} X_{2}+\frac{1}{6} X_{3} \\
& T_{2}=\frac{2}{3} X_{1}+\frac{3}{4} X_{2}-\frac{5}{12} X_{3}
\end{aligned}
$$

(i) Calculate the relative efficiency of T_{1} with respect to T_{2}.
(ii) With reference to your answer to part (b)(i), state, with a reason, which of T_{1} and T_{2} is the better unbiased estimator for μ.

7 A student at an agricultural college was asked to compare the variability of the weight, X grams, of eggs laid by free-range hens with the weight, Y grams, of eggs laid by battery hens.

The variables X and Y may be assumed to be normally distributed with variances $\sigma_{X}{ }^{2}$ and $\sigma_{Y}{ }^{2}$ respectively.

A random sample of 12 values of X resulted in $\sum(x-\bar{x})^{2}=761.2$, where \bar{x} denotes the sample mean.

A random sample of 10 values of Y resulted in $\sum(y-\bar{y})^{2}=386.1$, where \bar{y} denotes the sample mean.
(a) Calculate unbiased estimates of $\sigma_{X}{ }^{2}$ and $\sigma_{Y}{ }^{2}$.
(b) (i) Hence determine a 90% confidence interval for the ratio $\frac{\sigma_{X}{ }^{2}}{\sigma_{Y}{ }^{2}}$.
(ii) Comment on the suggestion that the weights of eggs laid by free-range hens are more variable than the weights of eggs laid by battery hens.

END OF QUESTIONS

