

General Certificate of Education

Mathematics 6360

MPC4 Pure Core 4

Mark Scheme

2007 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2007 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and abbreviations used in marking

М	mark is for method					
m or dM	mark is dependent on one or more M marks and is for method					
А	mark is dependent on M or m marks and is for accuracy					
В	mark is independent of M or m marks and is for method and accuracy					
Е	mark is for explanation					
or ft or F	follow through from previous					
	incorrect result	MC	mis-copy			
CAO	correct answer only	MR	mis-read			
CSO	correct solution only	RA	required accuracy			
AWFW	anything which falls within	FW	further work			
AWRT	anything which rounds to	ISW	ignore subsequent work			
ACF	any correct form	FIW	from incorrect work			
AG	answer given	BOD	given benefit of doubt			
SC	special case	WR	work replaced by candidate			
OE	or equivalent	FB	formulae book			
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme			
–x EE	deduct x marks for each error	G	graph			
NMS	no method shown	c	candidate			
PI	possibly implied	sf	significant figure(s)			
SCA	substantially correct approach	dp	decimal place(s)			

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

Solution	Marks	Total	Comments
$2\left(-\frac{1}{2}\right)^2 + \left(-\frac{1}{2}\right) - 3 = -3$	M1A1	2	use of $\pm \frac{1}{2}$
Alt algebraic division:			SC NMS –3 1/2 No ISW, so subsequent answer "3" AO
$\frac{x}{2x+1)2x^2+x-3}$	(M1)		complete division with integer remainder
$\frac{2x + x}{-3}$ Alt	(A1)	(2)	remainder = -3 stated, or -3 highlighted
$\frac{x(2x+1)-3}{2x+1}$	(M1)		attempt to rearrange numerator with $(2x+1)$ as a factor
	(A1)	(2)	remainder = -3 stated, or -3 highlighted
$\frac{(2x+3)(x-1)}{(x+1)(x-1)}$	B1 B1		numerator denominator hot necessarily in fraction
$=\frac{2x+3}{x+1}$	B1	3	CAO in this form. Not $\frac{2x+3}{x+1} \frac{x-1}{x-1}$
Alternative $\frac{2x^2 - 2 + x - 1}{x^2 - 1}$			
$=2+\frac{x-1}{x^2-1}$	(M1)		
$= 2 + \frac{x-1}{(x-1)(x+1)}$	(B1)		
$=2+\frac{1}{x+1}$	(A1)	(3)	
Total		5	
	$2\left(-\frac{1}{2}\right)^{2} + \left(-\frac{1}{2}\right) - 3 = -3$ Alt algebraic division: $2x + 1 \overline{\smash{\big)}2x^{2} + x - 3}}$ $2x^{2} + x$ -3 Alt $\frac{2x^{2} + x}{-3}$ Alt $\frac{x(2x+1) - 3}{2x+1}$ $\frac{(2x+3)(x-1)}{(x+1)(x-1)}$ $= \frac{2x+3}{x+1}$ Alternative $\frac{2x^{2} - 2 + x - 1}{x^{2} - 1}$ $= 2 + \frac{x - 1}{x^{2} - 1}$ $= 2 + \frac{x - 1}{(x-1)(x+1)}$ $= 2 + \frac{1}{x+1}$	$2\left(-\frac{1}{2}\right)^{2} + \left(-\frac{1}{2}\right) - 3 = -3$ M1A1 Alt algebraic division: $2x + 1\overline{)2x^{2} + x - 3}$ (M1) $\frac{2x^{2} + x}{-3}$ (A1)	$2\left(-\frac{1}{2}\right)^{2} + \left(-\frac{1}{2}\right)^{-3} = -3$ MIA1 2 Alt algebraic division: $2x+1)\overline{2x^{2}+x-3}$ $2x^{2}+x$ -3 (M1) (A1) (2) (A1) (2) (A1) (3)

Q	Solution	Marks	Total	Comments
2(a)(i)	$(1+x)^{-1} = 1 + (-1)x + px^{2} + qx^{3}$	M1		$p \neq 0, q \neq 0$
	$=1-x+x^2-x^3$	A1	2	SC 1/2 for $= 1 - x + px^2$
(ii)	$(1+3x)^{-1} = 1 - 3x + (3x)^{2} - (3x)^{3}$	M1		<i>x</i> replaced by 3 <i>x</i> in candidate's (a)(i);condone missing brackets
	$= 1 - 3x + 9x^2 - 27x^3$ Alt (starting again)	A1	2	CAO SC x^3 -term : $1 - 3x + \frac{3}{9}x^2$ 1/
	$(1+3x)^{-1} = 1-(3x) +$			
	$\frac{(-1)(-2)(3x)^2}{2!} + \frac{(-1)(-2)(-3)(3x)^3}{3!}$	(M1)		condone missing brackets accept 2 for 2!, 3.2 for 3!
	$=1-3x+9x^2-27x^3$	(A1)	(2)	CAO
(b)	$\frac{1+4x}{(1+x)(1+3x)} = \frac{A}{1+x} + \frac{B}{1+3x}$	M1		correct partial fractions form, and multiplication by denominator
	1 + 4x = A(1+3x) + B(1+x)			
	$x = -1, \ x = -\frac{1}{3}$	m1		Use (any) two values of x to find A and
	$A = \frac{3}{2}, B = -\frac{1}{2}$	A1	3	A and B both correct
	Alt:			
	$\frac{1+4x}{(1+x)(1+3x)} = \frac{A}{1+x} + \frac{B}{1+3x}$	(M1)		correct partial fractions form, and multiplication by denominator
	1 + 4x = A(1+3x) + B(1+x)			
	$A+B=1, \ 3A+B=4$	(m1)		Set up and solve
	$A = \frac{3}{2}, B = -\frac{1}{2}$	(A1)	(3)	A and B both correct
(c)(i)	$\frac{1+4x}{(1+x)(1+3x)} = \frac{3}{2(1+x)} - \frac{1}{2(1+3x)}$	M1		
	$=\frac{3}{2}(1-x+x^2-x^3)-\frac{1}{2}(1-3x+9x^2-27x^3)$	m1		multiply candidate's expansions by A a
	$=1-3x^2+12x^3$	A1	3	<i>B</i> , and expand and simplify CAO
	-1 54 1124		5	SC A and B interchanged, treat as
	Alt:			miscopy. $(1-4x+13x^2-40x^3)$
	$=\frac{1\!+\!4x}{(1\!+\!x)(1\!+\!3x)}=(1\!+\!4x)(1\!+\!x)^{-1}(1\!+\!3x)^{-1}$			
	$= (1+4x)(1-x+x^2-x^3)(1-3x+9x^2-27x^3)$	(M1)		write as product, using expansions
	$= 1 - 4x + 13x^2 - 40x^3 + 4x - 16x^2 + 52x^3$	(m1)		condone missing brackets on $(1 + 4x)$ o attempt to multiply the three expansions up to terms in x^3
	$=1-3x^2+12x^3$	(A1)	(3)	CAO
(ii)	x < 1 and $ 3x < 1$	M1		OE and nothing else incorrect
	$\left x\right < \frac{1}{3} \tag{0.33}$	A1	2	OE Condone ≤
	Total		12	

Q	Solution	Marks	Total	Comments
3(a)	R = 5	B1		
	$\tan \alpha = \frac{3}{4}$ (OE) $\alpha = 36.9^{\circ}$ (ISW 216.9)	M1A1	3	SC1 $\tan \alpha = \frac{4}{3}, \alpha = 53.1^{\circ}$
				R, α PI in (b)
(b)	$\cos(x-\alpha) = \frac{2}{R}$ $x-\alpha = 66.4^{\circ}$	M1		
	$x - \alpha = 66.4^{\circ}$	A1		
	$x = 103.3^{\circ}$	A1F		
	$x = 330.4^{\circ}$	A1F	4	accept 330.5°, –1 each extra
				ft on acute α
(c)	minimum value $=-5$	B1F		ft on <i>R</i>
	$\cos(x - 36.9) = -1$	M1		SC $\cos(x+36.9)$ treat as miscopy
	$x = 216.9^{\circ}$	A1	3	216.9 or better accept graphics calculato solution to this accuracy
				SC Find max: max = 5 at $(x+36.9)$ stated 1/3
				Max 8/10 for work in radians
	Total		10	

Q	Solution	Marks	Total	Comments
4(a)(i)	t = 0: x = 3	B1	1	
(ii)				<u>-14</u>
()	$t = 14$: $x = 15 - 12e^{-1}$	M1 A1	2	or $15 - 12 e^{\frac{-14}{14}}$ CAO
(b)(i)	$t = 14: x = 15 - 12e^{-1}$ = 10.6 -5 = -12e^{-\frac{t}{14}}	M1	2	substitute $x = 10$; rearrange to form
	$-5 = -12e^{-14}$	IVIII		
				$p = q e^{-\frac{t}{14}}$
	$\ln\left(\frac{5}{12}\right) = -\frac{t}{14} (OE)$	ml		take lns correctly
	$t = 14 \ln\left(\frac{12}{5}\right)$	A1	3	must some from correct working
		AI	3	must come from correct working
(ii)	$t = 12.256 \approx 12$ days	B1F	1	ft on <i>a</i> , <i>b</i> if $a > b$; accept $t = 12$ NMS
				Accept 12 from incorrect working in b(Accept 13 if 12.2 or 12.3 seen
(c)(i)	$\frac{dx}{dt} = -\frac{1}{14} \times -12e^{-\frac{t}{14}}$	M1		differentiate; allow sign error
	dt = 14	1111		
				condone $\frac{dy}{dx}$ used consistently
	$=-\frac{1}{14}(x-15)$	m1		Or $\frac{1}{14} \left(12e^{-\frac{t}{14}} \right)$ and $12e^{-\frac{t}{14}} = 15 - x$ see
	$=\frac{1}{14}(15-x)$	A1	3	AG – be convinced CSO
	Alt: $t = -14 \ln\left(\frac{15 - x}{12}\right)$	(M1)		attempt to solve given equation for t
	$\frac{\mathrm{d}t}{\mathrm{d}x} = \frac{-14\left(-\frac{1}{12}\right)}{\left(\frac{15-x}{12}\right)}$			1
	$\frac{dx}{dx} = \frac{1}{(15-x)}$	(m1)		differentiate wrt x, with $\frac{1}{15-x}$ seen; O
	(12)			12
	$\frac{\mathrm{d}t}{\mathrm{d}x} = \frac{14}{15 - x} \Longrightarrow \frac{\mathrm{d}x}{\mathrm{d}t} = \frac{1}{14}(15 - x)$	(A1)	(3)	AG – be convinced
	dx = 15 - x = dt = 14 Alt: (backwards)			
	$\int \frac{dx}{15-x} = \int \frac{dt}{14} = \pm 14 \ln (15-x) = t+c$			
	$J_{15-x} = J_{14} = \pm 14 \text{ in } (15-x) = t+c$	(M1)		
	Use $(0,3):-14\ln(15-x)+14\ln 12 = t$	(m1)		
	Solve for <i>x</i> : $x = 15 - 12e^{-\frac{t}{14}}$	(A1)	(3)	All steps shown
(ii)	rate of growth = 0.5 (cm per day)	B1	1	Accept $\frac{7}{14}$
	Total		11	14

MPC4 (cont) Solution	Manka	Total	Commonto
Q	-	Marks	Total	Comments
5(a)	-	M1	•	condone y for a
	(5a+4)(a-1)=0, a=1	A1	2	AG – be convinced, both factors seen
				or $a = -\frac{4}{5}$ or $1 \Rightarrow a = 1$
				A0 for 2 positive roots
				(substitute $(1, 1) \Rightarrow 5 = 5$ no marks)
(b)	$\frac{\mathrm{d}y}{\mathrm{d}x} + 4$	B1B1		(Ignore ' $\frac{dy}{dx}$ =' if not used, otherwise
				loses final A1)
	$=10xy^2+10x^2y\frac{\mathrm{d}y}{\mathrm{d}x}$	M1		attempt product rule, see two terms added
	dx	M1		chain rule, $\frac{dy}{dx}$ attached to one term only
		A1		condone 5×2 for 10
	$x = 1, y = 1$ $\frac{dy}{dx} + 4 = 10 + 10\frac{dy}{dx}$	M1		two terms, or more, in $\frac{dy}{dx}$
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{6}{9} = \left(-\frac{2}{3}\right)$	A1	7	CSO
	Alt (for last two marks)			
	$dv = 10xv^2 - 4$			dy
	$\frac{dy}{dx} = \frac{10xy^2 - 4}{1 - 10x^2y}$	(M1)		find $\frac{dy}{dx}$ in terms of x, y and substitute
				x = 1, y = 1 must be from expression with
				two terms or more in $\frac{dy}{dx}$
	$(1,1) \Longrightarrow \frac{10-4}{1-10} = -\frac{6}{9}$	(A1)		
(c)	$\frac{y-1}{x-1} = -\frac{2}{3}$ (OE)	B1F	1	ft on gradient ISW after any correct form
	Total		10	

Q	Solution	Marks	Total	Comments
6(a)(i)	$\frac{\mathrm{d}x}{\mathrm{d}\theta} = -\sin\theta \qquad \frac{\mathrm{d}y}{\mathrm{d}\theta} = 2\cos 2\theta$	B1 B1	2	
(ii)	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{2\cos 2\theta}{\sin \theta}, \ \frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{2\cos \frac{\pi}{3}}{\sin \frac{\pi}{6}} = -2$	M1		use chain rule their $\frac{dy}{d\theta}$ their $\frac{dx}{d\theta}$ and
(b)	$y = 2\sin\theta\cos\theta = 2\sqrt{1-\cos^2\theta}\cos\theta$	A1 B1 B1	2	substitute $\theta = \frac{\pi}{6}$ use $\sin 2\theta = 2\sin \theta \cos \theta$ use $\sin^2 \theta = 1 - \cos^2 \theta$
	$y = 2\sqrt{1 - x^2} x$	M1		$\sin\theta,\cos\theta$ in terms of x
	$y = 2\sqrt{1 - x^2} x$ $y^2 = 4x^2 (1 - x^2)$	A1	4	all correct CSO
	Alt $y^{2} = \sin^{2} 2\theta = (2\sin\theta\cos\theta)^{2}$ $= (4)\sin^{2}\theta\cos^{2}\theta = (4)(1-\cos^{2}\theta)\cos^{2}\theta$	(B1) (B1)		use of double angle formula use of $s^2 + c^2 = 1$ to eliminate $\sin \theta$
	$= (4)(1-x^2)x^2$	(B1) (M1)		Substitute $\cos \theta$ for x
	$=4(1-x^2)x^2$	(A1)	(4)	CSO
	Total		8	

MPC4 (cont		1		
Q	Solution	Marks	Total	Comments
7(a)	$\begin{bmatrix} 3 \\ -3 \\ -1 \end{bmatrix} \bullet \begin{bmatrix} 1 \\ 2 \\ -3 \end{bmatrix} = 3 - 6 + 3 = 0$	M1		attempt at sp, 3 terms, added
	$= 0 \Rightarrow$ perpendicular	A1	2	$= 0 \Rightarrow \text{ perpendicular seen}$ (or $\cos \theta = 0 \Rightarrow \theta = 90^{\circ}$) 3 Allow $\frac{-6}{\frac{3}{0}} \text{ but not } \begin{bmatrix} 3\\-6\\3 \end{bmatrix} = 0$
(b)	$8+3\lambda = -4 + \mu$ $6-3\lambda = 2\mu$ $-9-\lambda = 11-3\mu$	M1		$\frac{3}{0} \begin{bmatrix} 3 \end{bmatrix}$ set up any two equations
	$\lambda = -2, \mu = 6$ verify third equation	m1 A1 m1		solve for λ and μ substitute λ, μ in third equation
	intersect at (2, 12, -7) Alt (for last two marks)	A1	5	САО
	substitute λ into l_1 and μ into l_2 (2)	(m1)		
	intersect at $(2, 12, -7)$, condone $\begin{pmatrix} 2\\12\\-7 \end{pmatrix}$	(A1)		(2, 12, -7) found from both lines Note: working for (b) done in (a): award marks in (b)
7(c)	$\overrightarrow{AP} = \begin{pmatrix} 6\\12\\-18 \end{pmatrix}$	M1		$\overrightarrow{AP} = \pm \left\{ \text{their } \overrightarrow{OP} - \begin{pmatrix} -4\\0\\11 \end{pmatrix} \right\}$
	$AP^2 = 504$	A1F		ft on P
	$AB^2 = 2AP^2$	M1		Calculate AB^2
	$AB = 12\sqrt{7}$	A1	4	OE accept 31.7 or better
	Total		11	

MPC4 (cont)			
Q	Solution	Marks	Total	Comments
8 (a)	$\int \frac{1}{\sqrt{1+2y}} dy = \int \frac{1}{x^2} dx$ $\int \frac{1}{\sqrt{1+2y}} dy = k\sqrt{1+2y}$ $\sqrt{1+2y} = -\frac{1}{x}(+c)$ $x = 1, y = 4 \Longrightarrow c = 4$	M1		attempt to separate and integrate
	$\int \frac{1}{\sqrt{1+2y}} \mathrm{d}y = k\sqrt{1+2y}$	ml		
	<u> </u>	A1		OE A1 for $\sqrt{1+2y}$ depends on both Ms
	$\sqrt{1+2y} = -\frac{1}{x}(+c)$	A1		A1 for $-\frac{1}{x}$ depends on first M1 only
	$x = 1, y = 4 \Longrightarrow c = 4$	m1		+c must be seen on previous line
		A1F	6	ft on k and $\pm \frac{1}{x}$ only
(b)	$1 + 2y = \left(4 - \frac{1}{x}\right)^{2}$ $2y = 15 + \frac{1}{x^{2}} - \frac{8}{x}$	ml		need $k\sqrt{1+2y} = x$ expression with $+c'$ and attempt to square both sides
	$2y = 15 + \frac{1}{x^2} - \frac{8}{x}$	A1	2	terms on RHS in any order AG – be convinced CSO
	Total		8	
	TOTAL		75	