General Certificate of Education June 2007 Advanced Level Examination

MATHEMATICS Unit Further Pure 4

MFP4

Friday 22 June 2007 9.00 am to 10.30 am

For this paper you must have:

- a 12-page answer book
- the **blue** AQA booklet of formulae and statistical tables.

You may use a graphics calculator.

Time allowed: 1 hour 30 minutes

Instructions

- Use blue or black ink or ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The *Examining Body* for this paper is AQA. The *Paper Reference* is MFP4.
- Answer all questions.
- Show all necessary working; otherwise marks for method may be lost.

Information

- The maximum mark for this paper is 75.
- The marks for questions are shown in brackets.

Advice

• Unless stated otherwise, you may quote formulae, without proof, from the booklet.

Answer all questions.

- 1 Given that $\mathbf{a} \times \mathbf{b} = 3\mathbf{i} + \mathbf{j} + \mathbf{k}$ and that $\mathbf{a} \times \mathbf{c} = -\mathbf{i} 2\mathbf{j} + \mathbf{k}$, determine:
 - (a) $\mathbf{c} \times \mathbf{a}$; (1 mark)
 - (b) $\mathbf{a} \times (\mathbf{b} + \mathbf{c})$; (2 marks)
 - (c) $(\mathbf{a} \times \mathbf{b}) \cdot (\mathbf{a} \times \mathbf{c})$; (2 marks)
 - (d) $\mathbf{a} \cdot (\mathbf{a} \times \mathbf{c})$. (1 mark)

2 Factorise completely the determinant $\begin{vmatrix} y & x & x+y-1 \\ x & y & 1 \\ y+1 & x+1 & 2 \end{vmatrix}$. (6 marks)

3 Three points, A, B and C, have position vectors

 $\mathbf{a} = \begin{bmatrix} 1\\7\\-1 \end{bmatrix}, \ \mathbf{b} = \begin{bmatrix} 5\\1\\1 \end{bmatrix}$ and $\mathbf{c} = \begin{bmatrix} 2\\-3\\1 \end{bmatrix}$

respectively.

(a) Using the scalar triple product, or otherwise, show that **a**, **b** and **c** are coplanar.

(2 marks)

- (b) (i) Calculate $(\mathbf{b} \mathbf{a}) \times (\mathbf{c} \mathbf{a})$. (3 marks)
 - (ii) Hence find, to three significant figures, the area of the triangle ABC. (3 marks)

4 Consider the following system of equations, where k is a real constant:

	kx + 2y + z = 5	
	x + (k+1)y - 2z = 3	
	2x - ky + 3z = -11	
(a)	Show that the system does not have a unique solution when $k^2 = 16$.	(3 marks)
(b)	In the case when $k = 4$, show that the system is inconsistent.	(4 marks)
(c)	In the case when $k = -4$:	
	(i) solve the system of equations;	(5 marks)
	(ii) interpret this result geometrically.	(1 mark)
The	line <i>l</i> has equation $\mathbf{r} = \begin{bmatrix} 3 \\ 26 \\ -15 \end{bmatrix} + \lambda \begin{bmatrix} 8 \\ -4 \\ 1 \end{bmatrix}$.	
(a)	Show that the point $P(-29, 42, -19)$ lies on l .	(1 mark)
(b)	Find:	
	(i) the direction cosines of l ;	(2 marks)
	(ii) the acute angle between l and the z-axis.	(1 mark)
(c)	The plane Π has cartesian equation $3x - 4y + 5z = 100$.	
	(i) Write down a normal vector to Π .	(1 mark)
	(ii) Find the acute angle between l and this normal vector.	(4 marks)
(d)	Find the position vector of the point Q where l meets Π .	(4 marks)
(e)	Determine the shortest distance from P to Π .	(3 marks)

Turn over for the next question

5

6 The matrices A and B are given by

$$\mathbf{A} = \begin{bmatrix} 1 & 1 \\ -1 & 1 \\ 1 & 1 \end{bmatrix} \text{ and } \mathbf{B} = \begin{bmatrix} 1 & 0 & 1 \\ 2 & 2 & t \end{bmatrix}$$

- (a) Find, in terms of t, the matrices:
 - (i) AB; (3 marks)
 - (ii) **BA**. (2 marks)
- (b) Explain why **AB** is singular for all values of t. (1 mark)
- (c) In the case when t = -2, show that the transformation with matrix **BA** is the combination of an enlargement, E, and a second transformation, F. Find the scale factor of E and give a full geometrical description of F. (6 marks)

7 (a) The matrix $\mathbf{M} = \begin{bmatrix} -1 & 2 \\ -2 & 3 \end{bmatrix}$ represents a shear.

- (i) Find det **M** and give a geometrical interpretation of this result. (2 marks)
- (ii) Show that the characteristic equation of **M** is $\lambda^2 2\lambda + 1 = 0$, where λ is an eigenvalue of **M**. (2 marks)
- (iii) Hence find an eigenvector of **M**. (3 marks)
- (iv) Write down the equation of the line of invariant points of the shear. (1 mark)
- (b) The matrix $\mathbf{S} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ represents a shear.
 - (i) Write down the characteristic equation of **S**, giving the coefficients in terms of *a*, *b*, *c* and *d*. (2 marks)
 - (ii) State the numerical value of det S and hence write down an equation relating a, b, c and d. (2 marks)
 - (iii) Given that the only eigenvalue of S is 1, find the value of a + d. (2 marks)

END OF QUESTIONS

Copyright © 2007 AQA and its licensors. All rights reserved.