

General Certificate of Education

Mathematics 6360 Statistics 6380

MS/SS1A Statistics 1A

Mark Scheme

2007 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2007 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and abbreviations used in marking

M	mark is for method					
m or dM	mark is dependent on one or more M marks and is for method					
A	mark is dependent on M or m marks and is for accuracy					
В	mark is independent of M or m marks and is for method and accuracy					
Е	mark is for explanation					
$\sqrt{\text{or ft or F}}$	follow through from previous					
	incorrect result	MC	mis-copy			
CAO	correct answer only	MR	mis-read			
CSO	correct solution only	RA	required accuracy			
AWFW	anything which falls within	FW	further work			
AWRT	anything which rounds to	ISW	ignore subsequent work			
ACF	any correct form	FIW	from incorrect work			
AG	answer given	BOD	given benefit of doubt			
SC	special case	WR	work replaced by candidate			
OE	or equivalent	FB	formulae book			
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme			
–x EE	deduct x marks for each error	G	graph			
NMS	no method shown	C	candidate			
PI	possibly implied	Sf	significant figure(s)			
SCA	substantially correct approach	Dp	decimal place(s)			

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

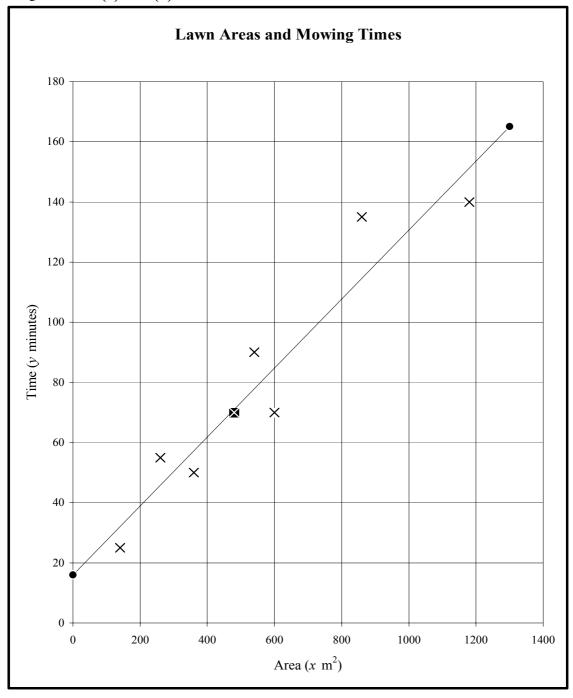
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

Jan 07

MS/SS1A

MS/SS1A Q	Solution	Marks	Total	Comments
1(a)	Mean $(\overline{x}) = 39.3$ to 39.4	B1	Total	AWFW (39.35)
T(a)	Standard Deviation (s_n, s_{n-1}) = 12.3 to 12.7	В2	3	AWFW (12.358 or 12.679)
	If neither correct but working shown, then			$\sum x = 787 \sum x^2 = 34023$
	$Mean (\overline{x}) = \frac{\sum x}{20}$	(M1)		Used
(b)	Median = 42	B2		CAO
	Median = 41.5 or 39 or 40	(B1)		CAO
	Interquartile Range = $55 - 31 = 24$	B2	4	CAO; allow B1 for identification of 31 and 55; B0 if shown method is incorrect
	Interquartile Range = 21 to 27	(B1)		AWFW
(c)(i)	Mode: eg Does not exist If exists, must be > 60 or 58 All / too many different values Sparse data	B1		OE
(ii)	Range: eg Maximum value is unknown / > 60 or 58	B1	2	OE; accept 'slowest' but not 'smallest'
	Total		9	


Q	Solution	Marks	Total	Comments
2(a)	Use of binomial in (a), (b) or (c)	M1		Can be implied
(b)(i)	$P(P = 5) = {12 \choose 5} (p)^5 (1-p)^7$ = 0.207 to 0.208 $P(10 < S < 15) = 0.8074 \text{ or } 0.8849$ minus 0.3087 or 0.4406 $= 0.498 \text{ to } 0.499$	M1 A1 M1 A1	3	Allow $p = 0.45$, 0.30, 0.22 or $\frac{1}{3}$ AWFW (0.2075) Allow 3dp accuracy Allow 3dp accuracy
(c)	or B(40 0.30) expressions stated for at least 3 terms within $10 \le B' \le 20$ Answer = 0.498 to 0.499 Mean, $\mu = np = 22$ Variance, $\sigma^2 = np(1-p) = 17.16$ Standard deviation = $\sqrt{17.1}$ to 17.2 or = 4.14 to 4.15	(M1) (A2) B1√ M1	3	Or implied by a correct answer AWFW CAO; $$ on p only $(0 Use of np(1-p) even if SD AWFW$
	Total		9	

`	MS/SS1A (cont)					
Q	Solution	Marks	Total	Comments		
3(a)	$90\% \implies z = 1.64 \text{ to } 1.65$	B1		AWFW (1.6449)		
	or					
	$90\% \implies t = 1.66 \text{ to } 1.67$	(B1)		AWFW (1.6649)		
	(Knowledge of the <i>t</i> –distribution is not					
	required in this unit)					
	CI for μ is $\overline{x} \pm (z \operatorname{or} t) \times \frac{(s_{n-1} \operatorname{or} s_n)}{\sqrt{n}}$	M1		Used; must have \sqrt{n} with $n > 1$		
	Crior μ is $x \pm (201t) \times \frac{\pi}{\sqrt{n}}$	IVI I		Osed, must have \sqrt{n} with $n > 1$		
	·					
	Thus					
	(32 or 32.2)					
	184 ± (1.6449 or 1.6649) × $\frac{(32 \text{ or } 32.2)}{(\sqrt{78} \text{ or } \sqrt{77})}$	A 1√		\int on z or t only		
	$(\sqrt{8} \text{ or } \sqrt{7})$					
	Hence $184 \pm (5.94 \text{ to } 6.13)$					
	0104 + 06					
	or £184 ± £6					
	on (C170 C100)	A 1	4	AWDT: ion and switz		
	or (£178, £190)	A 1	4	AWRT; ignore units		
(b)(i)	Likely to be valid	B1		Accept 'valid' or equivalent		
(b)(i)	Likely to be valid	Di		Accept valid of equivalent		
(ii)	Different plays have different:					
(11)	programme prices, sales, marketing, etc					
	theatre or audience sizes, etc	B1				
	popularity, artists, etc					
	so	↑Dep↑				
	Unlikely to be valid	B1	3	Accept 'not valid' or equivalent		
	Total		7	1		

0	Solution	Marks	Total	Comments
4(a)	$P(R' \cap S' \cap T) = 0.3 \times 0.4 \times 0.8$	M1	Total	At least 1 probability correct
	= 0.096	A1	2	CAO; OE
(b)	$P(One) = (a) + P(R \cap S' \cap T') + P(R' \cap S' \cap T')$	M1		Use of 3 possibilities, ignore multipliers
	$= (a) + (0.7 \times 0.4 \times 0.2) + (0.3 \times 0.6 \times 0.2)$	M1		At least 1 new term correct
	= 0.096 + 0.056 + 0.036 = 0.188	A1	3	CAO; OE
(c)	P(At least one) = 1 - P(None) or = $P(One or two or three)$	M1		Used; OE; ignore multipliers
	$= 1 - (0.3 \times 0.4 \times 0.2)$ $= 1 - 0.024$ or $= (b) + (0.7 \times 0.6 \times 0.2) + (0.7 \times 0.4 \times 0.8)$ $+ (0.3 \times 0.6 \times 0.8) + (0.7 \times 0.6 \times 0.8)$ $= 0.188 + 0.084 + 0.224 + 0.144 + 0.336$	M1		At least 1 new term correct
	= 0.976	A1	3	CAO; OE
	Total		8	

Q	Solution	Marks	Total	Comments
5(a)(i)	$P(X < 45) = P\left(Z < \frac{45 - 37}{8}\right)$	M1		Standardising (44.5, 45 or 45.5) with 37 and ($\sqrt{8}$, 8 or 8 ²) and/or (37 – x)
	= P(Z < 1)	A1		CAO; ignore sign
	= 0.841	A1	3	AWRT (0.84134)
(ii)	P(30 < X < 45) = (i) - P(X < 30)	M1		Used; OE
	= (i) - P(Z < -0.875)			
	= $(i) - [1 - (0.80785 \text{ to } 0.81057)]$	m1		Area change
	= 0.648 to 0.652	A1	3	AWFW (0.65056)
(b)	$0.12 \Rightarrow z = 1.17 \text{ to } 1.18$	B1		AWFW; ignore sign (1.1750)
	$z = \frac{45 - 40}{\sigma}$	M1		Standardising 45 with 40 and σ
	= 1.175	m1		Equating z-term to z-value but not using 0.12, 0.88 or $ 1-z $
	$\sigma = 4.23 \text{ to } 4.28$	A1	4	AWFW
(c)	Route A: $P(X > 45) = 1 - (a)(i)$ Route B: $P(Y > 45) = 0.12$	B1		OE; must use 45
	so	↑Dep↑		
	Monica should use Route B (smaller prob)	B1√	2	
	Total		12	

Question 6 (a) and (b)

(a)	8 or 7 points plotted accurately (6 or 5 points plotted accurately	B2 B1)
(b)	Line plotted accurately (Evidence of correct method for ≥ 2 points	B2 M1)
		(Graph = 4)

MS/SS1A (co	Solution	Marks	Total	Comments
6(a)	8 or 7 points plotted accurately	B2	2	
	(6 or 5 points plotted accurately)	(B1)		
		, ,		
(b)	Gradient, $b = 0.114 \text{ to } 0.115$	B2		AWFW (0.11469)
	(b = 0.11 to 0.12)	(B1)		
	450 . 464	D.		A VANTONIA (4.6 0.000 A)
	Intercept, $a = 15.9$ to 16.1	B2		AWFW (16.00824)
	(a = 13 to 19)	(B1)		
	Attempt at $\sum x$, $\sum x^2$, $\sum y$ and $\sum xy$			4420, 2220800, 625 and 441200
		0.51		4420, 3230800, 635 and 441300
	or	(M1)		700750 1004625
	Attempt at S_{xx} and S_{xy}	(m. 1)		788750 and 90462.5
	Attempt at correct formula for b b = 0.114 to 0.115	(m1)		AWFW
	a = 15.9 to 16.1	(A1) (A1)		AWFW
	<i>u</i> = 13.9 to 10.1	(A1)		AWIW
	Accept <i>a</i> and <i>b</i> interchanged only if then			
	identified correctly later in question			
	The state of the s			
	Line plotted accurately	B2	6	At least from $x = 200$ to 1000
	(Evidence of correct method for ≥ 2	(M1)		
	points)			
				TT 1 ' 1' 11
(c)	$Res_H = y_H - Y_H = 70 - (a + b \times 480)$	M1		Used; or implied by correct answer;
				allow for $Y_H - y_H$ shown
	=-1.5 to -0.5	A1		AWFW (-1.06)
	1.5 to 0.5	711		1100)
	Point H is (almost) on / just below the	B1	3	Accept near / close / just above or
	line			equivalent
(d)	$Y = a + b \times 560$	M1		Used
	or reading from scatter diagram	1411		Osca
	7 0 / 01			A WYENY (00 0)
	= 79 to 81	A1		AWFW (80.2)
	12 Y			
	$Cost = Y \times \frac{12}{60} \text{ or } \frac{Y}{5}$	M1		Used
	00 3			
	=£15.8 to £16.2	A1	4	AWFW; ignore units (£16.05)
	Total		15	(42-2-2-7)
	TOTAL		60	