

General Certificate of Education

Mathematics 6360

MPC3 Pure Core 3

Mark Scheme

2007 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2007 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and abbreviations used in marking

М	mark is for method				
m or dM	mark is dependent on one or more M marks and is for method				
А	mark is dependent on M or m marks and is for accuracy				
В	mark is independent of M or m marks and is for method and accuracy				
Е	mark is for explanation				
or ft or F	follow through from previous				
	incorrect result	MC	mis-copy		
CAO	correct answer only	MR	mis-read		
CSO	correct solution only	RA	required accuracy		
AWFW	anything which falls within	FW	further work		
AWRT	anything which rounds to	ISW	ignore subsequent work		
ACF	any correct form	FIW	from incorrect work		
AG	answer given	BOD	given benefit of doubt		
SC	special case	WR	work replaced by candidate		
OE	or equivalent	FB	formulae book		
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme		
–x EE	deduct x marks for each error	G	graph		
NMS	no method shown	c	candidate		
PI	possibly implied	sf	significant figure(s)		
SCA	substantially correct approach	dp	decimal place(s)		

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MPC3

Q	Solution	Marks	Total	Comments
1	x = 1.5, 2.5, 3.5, 4.5	M1		Method
		A1		x values
	$y_1 = 0.7115$ 0.712			
	$y_2 = 0.5218$ 0.522			
	$\begin{array}{c} y_2 = 0.5218 & 0.522 \\ y_3 = 0.4439 & 0.444 \end{array} $ AWRT	A1		3 correct y's
	$y_4 = 0.3993$ 0.399			
	$A = 1 \times (y_1 + y_2 + y_3 + y_4)$			
	= 2.08	A1	4	
	Total	711	4	
2	Stretch (I)			
		M1		For I + (II or III)
	SF $\frac{1}{3}$ (II)			
	Parallel to $x - axis$ (III)	A1		All correct
	Translate	E1		Allow translation
	$\begin{pmatrix} 0\\1 \end{pmatrix}$	B1	4	Correct vector or description
2()	Total		4	
3(a)	$f(x) \leq 3$	M1A1	2	M1 for $f < 3, x \le 3$
(b)(i)	2			Condone <i>y</i> , f, range
(b)(i)	$y = \frac{2}{x+1}$			
	x + 1	MI		Attempt to abtain use a function of user
	$x+1=\frac{2}{y}$	M1		Attempt to obtain x as a function of y or y as a function of x
	$x = \frac{2}{-1}$	M1		$x \leftrightarrow y$ at any stage
	У			
	$y/g^{-1}(x) = \frac{2}{x} - 1 = \frac{2 - x}{x}$ $(g^{-1}(x)) \neq -1$	A1	3	Any correct form
		D1	1	
(11)	$\left(g^{-1}(x) \right) \neq -1$	B1	1	
(c)(i)		M1		
	$h(x) = \frac{2}{3 - x^2 + 1}$			
	2 2	A1	2	
	$=\frac{2}{4-x^2}=\frac{2}{(2-x)(2+x)}$			
(ii)	$(x \in \mathbb{R}), x \neq +2, x \neq -2$	B1	1	Condone omit 'x is real' Allow $x^2 \neq 4$
(11)				Condone offit x is real. Allow $x \neq 4$
	Total		9	

MPC3 (con	t)			
Q	Solution	Marks	Total	Comments
4(a)	$\int x \sin x \mathrm{d}x \qquad u = x$ $\mathrm{d}y \qquad .$	M1		For differentiating one term and
	$\frac{dv}{dx} = \sin x$ $\frac{du}{dx} = 1 v = -\cos x$ $\int = -x \cos x - \int -\cos x (dx)$	IVII		integrating other
	$\int = -x \cos x - \int -\cos x (dx)$	m1 A1		For correctly substituting their terms into parts formula
	$= -x\cos x + \sin x (+c)$	Al	4	CSO
(b)	$u = x^{2} + 5$ du = 2x dx			
	$\int = \int \frac{1}{2} u^{\frac{1}{2}} (\mathrm{d}u)$	M1		$\int ku^{\frac{1}{2}} (du) \text{ condone omission of } du$ but M0 if dx
		A1		$k = \frac{1}{2}$ OE
	$=\frac{u^{\frac{3}{2}}}{3}$	A1√		Ft $\int k u^{\frac{1}{2}} du$
	$=\frac{1}{3}\sqrt{(x^2+5)^3}$ (+c)	A1	4	CSO SC $\frac{2}{6}\sqrt{(x^2+5)^3}$ with no working B3
(c)	$y = x^{2} - 9$ $x^{2} = y + 9$			
	$V = \pi \int x^2 \mathrm{d} y$	B1		Must have π and x^2 , condone omission of dy, but B0 if dx
	$=\pi\int (y+9)\mathrm{d}y$			
	$=\pi \int (y+9) dy$ = $(\pi) \left[\frac{y^2}{2} + 9y \right]_1^2$ or $(\pi) \left[\frac{(y+9)^2}{2} \right]_1^2$	M1		$\int "\text{their } x^2 dy \text{ integrated} \\ \text{Limits 2 and 1 substituted in} \\ \text{correct order including} \\ \text{cirr} \\ \end{bmatrix} \pi \text{ not} \\ \text{necessary} \\ \text{necessary} \\ \text{necessary} \\ \text{correct order including} \\ \text{necessary} \\ $
	$=(\pi)[20-9\frac{1}{2}]$	m1		correct order including – sign
	$=10\frac{1}{2}\pi$	A1	4	CSO
	Total		12	

MPC3 (con		1		1
Q	Solution	Marks	Total	Comments
5(a)(i)	$2(\csc^2 x - 1) + 5 \csc x = 10$	M1		
	$2\csc^2 x - 2 + 5\csc x - 10 = 0$			
	$2\csc^2 x + 5\csc x - 12 = 0$	A1	2	AG
(ii)	$(2 \operatorname{cosec} x - 3)(\operatorname{cosec} x + 4) = 0$	M1		Attempt to solve
	$\csc x = \frac{3}{2} \text{ or} - 4$	A1		Condone answers with no method shown
	$\sin x = \frac{2}{3} \text{ or } -\frac{1}{4}$	A1	3	AG
(b)	$(\theta - 0.1) = 0.73, 2.41, -0.25, -2.89$ $\theta = 0.83, 2.51, -0.15, -2.79$ AWRT	B1		2 correct values, may be implied later
	AWRT	D1		(41.8, 138.2, -165.5, -14.5)
	$\theta = 0.83, 2.51, -0.15, -2.79$ AWRT	B1 B1	3	2 correct answers + 2 correct answers and no extra within
		21		range
	Total		8	
6(a)(i)	$y = (4x^2 + 3x + 2)^{10}$			
	$y = (4x^{2} + 3x + 2)^{10}$ $\frac{dy}{dx} = 10 (4x^{2} + 3x + 2)^{9} (8x + 3)$	M1 A1	2	For $f(x)()^9$ where $f(x) \neq k$ and is linear
(ii)	$y = x^2 \tan x$	M1		Product rule
	$\frac{\mathrm{d}y}{\mathrm{d}x} = x^2 \sec^2 x + 2x \tan x$	A1	2	
(b)(i)	$x=2y^3+\ln y$			
	$\frac{\mathrm{d}x}{\mathrm{d}y} = 6y^2 + \frac{1}{y}$	B1	1	
(ii)	At (2,1)			
	$\frac{\mathrm{d}x}{\mathrm{d}y} = 6 + 1 = 7$	M1		
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{7}$	A1√		May be implied
	$dx 7 (y-1) = \frac{1}{7}(x-2)$	A1	3	OE
	Total		8	

MPC3 (con	t)			
Q	Solution	Marks	Total	Comments
7(a)	\rightarrow	B1	1	
(b)		M1 A1 A1	3	Shape inverted V in all four quadrants Symmetrical about <i>y</i> axis Coordinates
(c)	4 - 2x = x			
	$4-2x=x \qquad x=\frac{4}{3}$ $4+2x=x \qquad x=-4$ $-4 < x < \frac{4}{3}$	M1 A1		Attempt to solve
	$4 + 2x = x \qquad x = -4$	A1	3	And no others
(d)	$-4 < x < \frac{4}{3}$	M1 A1	2	Either correct Other solution and no extras SC $-4 \le x \le \frac{4}{2}$ B1
	Total		9	3
8(a)	$A(-1,\pi)$	B1		
(b)	$B\left(0,\frac{\pi}{2}\right)$ $\cos^{-1}x - 3x - 1 = 0$	B1	2	
	f(0.1)=0.17 allow 0.2, 0.1 f(0.2)=-0.23 allow -0.2	M1		Or comparing 'sides'
	Change of sign \therefore root	A1	2	
(c)	$x_1 = 0.1$	M1	_	
	$x_2 = 0.1569 = 0.157$	A1		
	$x_3 = 0.1378 = 0.138$			
	$x_4 = 0.144$	A1	3	
	Total		7	

MPC3 (con	MPC3 (cont)					
Q	Solution	Marks	Total	Comments		
9(a)(i)	$\int \left(4 - e^{2x}\right) dx$ $= 4x - \frac{1}{2} e^{2x} (+c)$					
	$\frac{1}{2}$	B1		4x		
	$=4x\frac{e^{2x}}{2}(+c)$	B1	2	$-\frac{1}{2}e^{2x}$		
		21	-	$-\frac{1}{2}c$		
	$\int_{0}^{\ln 2} = \left[4x - \frac{1}{2} e^{2x} \right]_{0}^{\ln 2}$			Substitute both ln 2 and 0 correctly into		
	$= \left[4\ln 2 - \frac{1}{2}e^{2\ln 2} \right] - \left[(0) - \frac{1}{2}(e^{0}) \right]$	M1		an integrated expression		
	$= 4 \ln 2 - 2 + \frac{1}{2}$ $= 4 \ln 2 - \frac{3}{2}$			Convincing		
	$=4\ln 2 - \frac{3}{2}$	A1	2	AG		
(b)(i)	x = 0 $y = 4 - 1 = \underline{3}$ At B, $y = 0$					
	$y = 4 - 1 = \underline{\underline{3}}$	B1	1			
(ii)	At $B, y = 0$					
	$4 - e^{2x} = 0$	M1		Or reverse argument		
	$e^{2x} = 4$ $x = \ln 2$	A 1	2			
(c)		A1	Z	AG		
(,)	$\frac{\mathrm{d}y}{\mathrm{d}x} = -2\mathrm{e}^{2x}$	B1				
	$x = \ln 2$, Gradient $= -2e^{2\ln 2}$	M1		$x = \ln 2$ into ke^{2x}		
	=-8					
	Gradient normal = $\frac{1}{8} = \frac{1}{2e^{2\ln 2}}$	A1		OE		
	Equation $y = \frac{1}{8}x - \frac{1}{8}\ln 2$	A1	4	OE		
(d)	When $x = 0$					
	$y = -\frac{1}{8}\ln 2$	M1		Attempt to integrate their line and substitute $x = 0$, ln 2		
	Area $\Delta = \frac{1}{16} (\ln 2)^2$ condone – ve sign = 0.03	A1√		$\frac{1}{2}$ (their y)×ln 2		
	Total area = $4 \ln 2 - \frac{3}{2} + \frac{1}{16} (\ln 2)^2 = 1.30$	A1	3	CSO		
	AWRT		14			
	Total Total		14 75			
	Totai		15			