General Certificate of Education January 2007 Advanced Level Examination

# MATHEMATICS Unit Further Pure 4

MFP4



Wednesday 31 January 2007 9.00 am to 10.30 am

### For this paper you must have:

- an 8-page answer book
- the **blue** AQA booklet of formulae and statistical tables.

You may use a graphics calculator.

Time allowed: 1 hour 30 minutes

### Instructions

- Use blue or black ink or ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The *Examining Body* for this paper is AQA. The *Paper Reference* is MFP4.
- Answer all questions.
- Show all necessary working; otherwise marks for method may be lost.

### Information

- The maximum mark for this paper is 75.
- The marks for questions are shown in brackets.

## Advice

• Unless stated otherwise, you may quote formulae, without proof, from the booklet.

### Answer all questions.

1 Show that the system of equations

$$x + 2y - z = 0$$
  

$$3x - y + 4z = 7$$
  

$$8x + y + 7z = 30$$

is inconsistent.

2 (a) Show that (a - b) is a factor of the determinant

$$\Delta = \begin{vmatrix} a & b & c \\ b+c & c+a & a+b \\ bc & ca & ab \end{vmatrix}$$
(2 marks)

- (b) Factorise  $\Delta$  completely into linear factors.
- 3 The points P, Q and R have position vectors  $\mathbf{p}$ ,  $\mathbf{q}$  and  $\mathbf{r}$  respectively relative to an origin O, where

$$\mathbf{p} = \begin{bmatrix} 1\\1\\4 \end{bmatrix}, \ \mathbf{q} = \begin{bmatrix} -3\\4\\20 \end{bmatrix} \text{ and } \mathbf{r} = \begin{bmatrix} 9\\2\\4 \end{bmatrix}$$

- (a) (i) Determine  $\mathbf{p} \times \mathbf{q}$ .(2 marks)(ii) Find the area of triangle OPQ.(3 marks)
- (b) Use the scalar triple product to show that  $\mathbf{p}$ ,  $\mathbf{q}$  and  $\mathbf{r}$  are linearly dependent, and
- interpret this result geometrically. (3 marks)

(4 marks)

(5 marks)

4 The matrices  $\mathbf{M}_{A} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix}$  and  $\mathbf{M}_{B} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$  represent the transformations A and B respectively.

3

- (a) Give a full geometrical description of each of A and B. (5 marks)
- (b) Transformation C is obtained by carrying out A followed by B.
  - (i) Find  $\mathbf{M}_{\mathbf{C}}$ , the matrix of C. (2 marks)
  - (ii) Hence give a full geometrical description of the single transformation C.

(2 marks)

5 (a) Find, to the nearest  $0.1^{\circ}$ , the acute angle between the planes with equations

$$r \cdot (3i - 4j + k) = 2$$
 and  $r \cdot (2i + 12j - k) = 38$  (4 marks)

- (b) Write down cartesian equations for these two planes. (2 marks)
- (c) (i) Find, in the form  $\frac{x-a}{l} = \frac{y-b}{m} = \frac{z-c}{n}$ , cartesian equations for the line of intersection of the two planes. (5 marks)
  - (ii) Determine the direction cosines of this line. (2 marks)
- 6 (a) Find the eigenvalues and corresponding eigenvectors of the matrix

$$\mathbf{X} = \begin{bmatrix} 1 & 2\\ 5 & 4 \end{bmatrix} \tag{6 marks}$$

(b) (i) Write down a diagonal matrix **D**, and a suitable matrix **U**, such that

$$\mathbf{X} = \mathbf{U}\mathbf{D}\mathbf{U}^{-1} \tag{2 marks}$$

- (ii) Write down also the matrix  $\mathbf{U}^{-1}$ . (1 mark)
- (iii) Use your results from parts (b)(i) and (b)(ii) to determine the matrix  $\mathbf{X}^5$  in the form  $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ , where *a*, *b*, *c* and *d* are integers. (3 marks)

#### Turn over for the next question

7 The transformation S is a shear with matrix  $\mathbf{M} = \begin{bmatrix} -1 & 2 \\ -2 & 3 \end{bmatrix}$ . Points (x, y) are mapped under S to image points (x', y') such that

$$\begin{bmatrix} x'\\ y' \end{bmatrix} = \mathbf{M} \begin{bmatrix} x\\ y \end{bmatrix}$$

- Find the equation of the line of invariant points of S. (2 marks) (a)
- (b) Show that all lines of the form y = x + c, where c is a constant, are invariant lines of S. (3 marks)
- Evaluate det **M**, and state the property of shears which is indicated by this result. (c) (2 marks)
- Calculate, to the nearest degree, the acute angle between the line y = -x and its image (d) under S. (3 marks)

8 The matrix 
$$\mathbf{P} = \begin{bmatrix} 4 & -1 & 2 \\ 1 & 1 & 3 \\ -2 & 0 & a \end{bmatrix}$$
, where *a* is constant.

(a) (i) Determine det **P** as a linear expression in *a*. (2 marks)

- (ii) Evaluate det **P** in the case when a = 3. (1 mark)
- (2 marks) (iii) Find the value of *a* for which **P** is singular.
- (b) The  $3 \times 3$  matrix **Q** is such that **PQ** = 25**I**.

### Without finding Q:

- write down an expression for  $\mathbf{P}^{-1}$  in terms of  $\mathbf{Q}$ ; (i) (1 mark)
- find the value of the constant k such that  $(\mathbf{PQ})^{-1} = k\mathbf{I}$ ; (ii) (2 marks)
- (iii) determine the numerical value of det **Q** in the case when a = 3. (4 marks)

#### **END OF QUESTIONS**