MATHEMATICS
MFP4
Unit Further Pure 4

Wednesday 31 January 20079.00 am to 10.30 am

For this paper you must have:

- an 8-page answer book
- the blue AQA booklet of formulae and statistical tables.

You may use a graphics calculator.

Time allowed: 1 hour 30 minutes

Instructions

- Use blue or black ink or ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The Examining Body for this paper is AQA. The Paper Reference is MFP4.
- Answer all questions.
- Show all necessary working; otherwise marks for method may be lost.

Information

- The maximum mark for this paper is 75 .
- The marks for questions are shown in brackets.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.

Answer all questions.

1 Show that the system of equations

$$
\begin{aligned}
x+2 y-z & =0 \\
3 x-y+4 z & =7 \\
8 x+y+7 z & =30
\end{aligned}
$$

is inconsistent.

2 (a) Show that $(a-b)$ is a factor of the determinant

$$
\Delta=\left|\begin{array}{ccc}
a & b & c \\
b+c & c+a & a+b \\
b c & c a & a b
\end{array}\right|
$$

(b) Factorise Δ completely into linear factors.

3 The points P, Q and R have position vectors \mathbf{p}, \mathbf{q} and \mathbf{r} respectively relative to an origin O, where

$$
\mathbf{p}=\left[\begin{array}{l}
1 \\
1 \\
4
\end{array}\right], \mathbf{q}=\left[\begin{array}{r}
-3 \\
4 \\
20
\end{array}\right] \text { and } \mathbf{r}=\left[\begin{array}{l}
9 \\
2 \\
4
\end{array}\right]
$$

(a) (i) Determine $\mathbf{p} \times \mathbf{q}$.
(ii) Find the area of triangle $O P Q$.
(b) Use the scalar triple product to show that \mathbf{p}, \mathbf{q} and \mathbf{r} are linearly dependent, and interpret this result geometrically.

4 The matrices $\mathbf{M}_{\mathrm{A}}=\left[\begin{array}{rrr}1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0\end{array}\right]$ and $\mathbf{M}_{\mathrm{B}}=\left[\begin{array}{rrr}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1\end{array}\right]$ represent the transformations A and B respectively.
(a) Give a full geometrical description of each of A and B .
(b) Transformation C is obtained by carrying out A followed by B .
(i) Find \mathbf{M}_{C}, the matrix of C .
(ii) Hence give a full geometrical description of the single transformation C.

5 (a) Find, to the nearest 0.1°, the acute angle between the planes with equations

$$
\mathbf{r} \cdot(3 \mathbf{i}-4 \mathbf{j}+\mathbf{k})=2 \text { and } \mathbf{r} \cdot(2 \mathbf{i}+12 \mathbf{j}-\mathbf{k})=38
$$

(b) Write down cartesian equations for these two planes.
(c) (i) Find, in the form $\frac{x-a}{l}=\frac{y-b}{m}=\frac{z-c}{n}$, cartesian equations for the line of intersection of the two planes.
(ii) Determine the direction cosines of this line.

6 (a) Find the eigenvalues and corresponding eigenvectors of the matrix

$$
\mathbf{X}=\left[\begin{array}{ll}
1 & 2 \\
5 & 4
\end{array}\right]
$$

(b) (i) Write down a diagonal matrix \mathbf{D}, and a suitable matrix \mathbf{U}, such that

$$
\mathbf{X}=\mathbf{U D U}^{-1}
$$

(ii) Write down also the matrix \mathbf{U}^{-1}.
(iii) Use your results from parts (b)(i) and (b)(ii) to determine the matrix \mathbf{X}^{5} in the form $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, where a, b, c and d are integers.

7 The transformation S is a shear with matrix $\mathbf{M}=\left[\begin{array}{ll}-1 & 2 \\ -2 & 3\end{array}\right]$. Points (x, y) are mapped under S to image points $\left(x^{\prime}, y^{\prime}\right)$ such that

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\mathbf{M}\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

(a) Find the equation of the line of invariant points of S.
(b) Show that all lines of the form $y=x+c$, where c is a constant, are invariant lines of S .
(c) Evaluate $\operatorname{det} \mathbf{M}$, and state the property of shears which is indicated by this result.
(2 marks)
(d) Calculate, to the nearest degree, the acute angle between the line $y=-x$ and its image under S .
(3 marks)

8 The matrix $\mathbf{P}=\left[\begin{array}{rrr}4 & -1 & 2 \\ 1 & 1 & 3 \\ -2 & 0 & a\end{array}\right]$, where a is constant.
(a) (i) Determine $\operatorname{det} \mathbf{P}$ as a linear expression in a.
(ii) Evaluate $\operatorname{det} \mathbf{P}$ in the case when $a=3$.
(iii) Find the value of a for which \mathbf{P} is singular.
(b) The 3×3 matrix \mathbf{Q} is such that $\mathbf{P Q}=25 \mathbf{I}$.

Without finding \mathbf{Q} :
(i) write down an expression for \mathbf{P}^{-1} in terms of \mathbf{Q};
(ii) find the value of the constant k such that $(\mathbf{P Q})^{-1}=k \mathbf{I}$;
(iii) determine the numerical value of $\operatorname{det} \mathbf{Q}$ in the case when $a=3$.

END OF QUESTIONS

