

General Certificate of Education

Mathematics 6360

MS/SS1A Statistics 1A

Mark Scheme

2006 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Key To Mark Scheme And Abbreviations Used In Marking

Μ	mark is for method				
m or dM	mark is dependent on one or more M marks and is for method				
А	mark is dependent on M or m marks and is for accuracy				
В	mark is independent of M or m marks and is for method and accuracy				
Е	mark is for explanation				
or ft or F	follow through from previous				
	incorrect result	MC	mis-copy		
CAO	correct answer only	MR	mis-read		
CSO	correct solution only	RA	required accuracy		
AWFW	anything which falls within	FW	further work		
AWRT	anything which rounds to	ISW	ignore subsequent work		
ACF	any correct form	FIW	from incorrect work		
AG	answer given	BOD	given benefit of doubt		
SC	special case	WR	work replaced by candidate		
OE	or equivalent	FB	formulae book		
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme		
–x EE	deduct <i>x</i> marks for each error	G	graph		
NMS	no method shown	с	candidate		
PI	possibly implied	sf	significant figure(s)		
SCA	substantially correct approach	dp	decimal place(s)		

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MS/SS1A Q	Solution	Marks	Total	Comments
<u>v</u> 1(a)	r = 0.143 to 0.1432	B3	Total	AWFW
1(a)	or	D3		AWIW
	r = 0.142 to 0.144	B2		AWFW
	or	22		
	r = 0.1 to 0.2	B1		AWRT
	2			
	Attempt at $\sum x \sum x^2$			3952, 2228282
	$\Sigma y \Sigma y^2$			47.00, 292.0000
	Σxy			23517.50
	orAttempt at S_{xx} S_{yy} S_{xy}	M1		275994, 15.875, 299.5
	Attempt at S_{xx} S_{yy} S_{xy}	1011		273994, 13.073, 299.3
	Attempt at a correct formula for r	m1		
	r = 0.143 to 0.1432	A1	3	AWFW
	T 1/1 / 1 /			
(b)	Little/weak/no	D1		an anvivalante but not a ser
	correlation/relationship/association between	B1		or equivalent; but not poor
	number of pages and (retail) price	B1	2	context
	number of pages and (retail) price	DI	2	context
(c)	Size (page, thickness), author, ranking,	B1	1	or any sensible variable but not pictures,
	publicity/marketing, cover design,			coloured pictures, age, words, weight,
	recommendations on back, publisher,			mass
	font, popularity, quality, print-run, etc			
	Total		6	
2(a)	Gradient, $b = -3.24$ to -3.26	B2		AWFW (-3.25)
	b = -3.2 to -3.3	B1		AWFW
	Intercept, $a = 262$ to 264	B2		AWFW $(262.8\dot{8})$
	a = 260 to 270	B1		AWFW
	Attempt at $\Sigma x \Sigma x^2 \Sigma y \Sigma xy$	N/1		108, 1836, 2015, 22425
	or Attempt at S_{xx} S_{xy}	M1		540, -1755
	Attempt at $S_{xx} = S_{xy}$ Attempt at a correct formula for <i>b</i>	m1		540, -1755
	b = -3.24 to -3.26	A1		AWRT
	a = 262 to 264	A1	4	AWFW
	Accept a & b interchanged only if			
	identified correctly in (b) and (c)			
(b)	Gradient, <i>b</i> :	D 2		
	Decrease in pressure per month	B2	2	or equivalent
	Change in pressure	B1	2	or better
(c)	Intercept, a:			
	Initial pressure or pressure at $x = 0$	B1		or equivalent; not y-intercept
	Reference to 265, actual or expected value	B1	2	
	, r			
	Total		8	

MS/SS1A (cont)

Q	Solution	Marks	Total	Comments
3(a)	B(15, 0.3)	M1		use of in (a)
(i)	(Fewer than) half \Rightarrow 7 or 7 ¹ / ₂ or 8	B1		stated or implied
()	Thus require $P(K \le 7 \text{ or } < 8)$	M1		used or implied by correct answer
	= 0.9495 to 0.9505	A1	4	AWFW (0.9500)
(ii)	P(2 < K < 7) = 0.8689 or 0.9500	M1		
	minus 0.1268 or 0.2969	M1		
	= 0.7415 to 0.7425	A1		AWFW (0.7421)
	or			
	B(15, 0.3) expressions stated for at least 3 terms within $2 \le K \le 7$	M1		or implied by a correct answer
	Answer	A2	3	
(b)(i)	Mean, $\mu = np = 15 \times 0.4 = 6$	B1		САО
	Variance, $\sigma^2 = np(1-p) = 6 \times 0.6 = 3.6$	M1		use of $\sigma^2 = np(1-p)$
	Standard deviation = $\sqrt{3.6}$ = 1.89 to 1.9	A1	3	AWFW; or equivalent
(ii)	Mean, $\overline{x} = 6$	B1		CAO $(\Sigma x = 60)$
				CSO if evidence of $np(1-p)$ or 1.9
	Standard deviation, <i>s</i> or $\sigma = 2.82$ to 2.99	B1	2	AWFW; or equivalent. $(\Sigma x^2 = 440)$
(iii)	Means are same/equal	B1√		\checkmark on 2 means; accept $\frac{6}{15} = 0.4$ if not
				contradicted by \overline{x} in (ii)
	Standard deviations are different	B1 dep	_	dependent on 2 correct SDs
	Reason to doubt validity of Kirk's claim	B1 dep	3	dependent on 2 correct SDs
	Total		15	

MS/SS1A (cont)

Q	Solution	Marks	Total	Comments
4	$ 0(R) 1(S) 2(T) \geq 3 T_{-}$			
	D(D) 24 32 41 23 120 SD(D') 40 37 88 35 200			
	SD(D') 40 37 88 35 200 T 64 69 129 58 320			
	120 2			
(a)(i)	$P(D) = \frac{120}{320}$ or $\frac{3}{8}$ or 0.375	B1	1	CAO; or equivalent
	320 8			
	24 3	D1		
(11)	$P(D \cap R) = \frac{24}{320}$ or $\frac{3}{40}$ or 0.075	B1	1	CSO; or equivalent
	520 10			
	$P(D = P)$ (ii) $\frac{24}{(220)}$			
(iii)	$P(D R) = \frac{P(D \cap R)}{P(R)} = \frac{(ii)}{P(R)} = \frac{\frac{24}{320}}{\frac{64}{320}}$	M1		M0 if independence assumed
	$P(R) = P(R) = \frac{64}{(320)}$			
	24 3			
	$=\frac{24}{64}$ or $\frac{3}{8}$ or 0.375	A1	2	CAO; or equivalent
()	$P(R \mid D') = \frac{P(R \cap D')}{P(D')} = \frac{\frac{40}{(320)}}{\frac{200}{(320)}}$	271		
(IV)	$P(R \mid D') = \frac{\Gamma(R \mid D')}{P(D')} = \frac{7(320)}{200/2}$	M1		numerator allow independence assumed
	$\Gamma(D) = \frac{200}{(320)}$	M1		denominator
	$=\frac{40}{200}$ or $\frac{1}{5}$ or 0.2			
	$-\frac{1}{200}$ or $\frac{1}{5}$ or 0.2	A1	3	CAO; or equivalent
		D 1	1	
(b)(i)	$R ext{ and } S ext{ or } R ext{ and } T ext{ or } S ext{ and } T$	B1	1	not D and D'
(ii)	P(D) = 0.375 = P(D R) or (i) = (iii)	M1		$P(D) \times P(R) = 0.375 \times 0.2$
				$= 0.075 = P(D \cap R)$ or (ii)
			_	or $P(R D) = P(R) = 0.2$, etc
	so YES	A1	2	
(c)(i)	A semi-detached house	B1		CAO
	or two children (or both)	B1	2	or equivalent
				-
(ii)	A detached house and/with	B1	2	CAO
	less than two children Total	B1	2 14	(0 or 1 must not include 'both')
	10tai		14	

MS/SS1A (cont)

_

<u>AS/SS1A (c</u> Q	Solution	Marks	Total	Comments
5(a)	Weight, $X \sim N(1012, 5^2)$			
(i)	$P(X < 1015) = P\left(Z < \frac{1015 - 1012}{5}\right)$	M1		standardising (1014.5, 1015 or 1015.5) with 1012 and ($\sqrt{5}$, 5 or 5 ²) and/or (1012 - <i>x</i>)
	= $P(Z < 0.6)$ = $\Phi(0.6) = 0.725$ to 0.726	A1 A1	3	CAO; ignore sign AWFW (0.72575)
(ii)	$P(X > 1005) = P\left(Z > \frac{1005 - 1012}{5}\right)$ $= P(Z > -1.4) = P(Z < 1.4)$	M1 m1		standardising (1004.5, 1005 or 1005.5) with 1012 and ($\sqrt{5}$, 5 or 5 ²) and/or (1012 – <i>x</i>) area change
	= 0.919 to 0.920	A1	3	AWRT (0.91924)
(iii)	P(1005 < X < 1015) = (i) - [1 - (ii)] = 0.72575 - [1 - 0.91924]	M1		or equivalent
	= 0.644 to 0.646	A1√	2	AWFW (0.64499) \checkmark on (i) and (ii) providing > 0
(b) (i)	Mean, $\overline{y} = 502.85$ Variance, $\sigma^2/s^2 = 50.3$ to 51.5	B1		CAO; stated or implied
	or Standard deviation, $\sigma/s = 7.09$ to 7.17	B1		AWFW; either stated or implied
	$98\% \Rightarrow z = 2.32$ to 2.33	B1		AWFW (2.3263)
	or $98\% \implies t = 2.40$ (Knowledge of the <i>t</i> -distribution is not required in this unit)	B1		AWRT (2.403)
	CI for μ is $\overline{y} \pm (z \text{ or } t) \times \frac{(\sigma \text{ or } s)}{\sqrt{n}}$	M1		use of; must have $(\div \sqrt{n})$ with $n > 1$
	Thus $502.85 \pm (2.33 \text{ or } 2.40) \times \left(\frac{7.09 \text{ to } 7.17}{\sqrt{49 \text{ or } 50}}\right)$	A 1√		$\sqrt[n]{}$ on \overline{x} , z/t and $\sigma/s > 0$; n = 49 or 50 only
	or $502.85 \pm (2.32 \text{ to } 2.46)$ or $(500.2 \pm 500.6 \pm 505.1 \pm 505.4)$. 1 . 1	(
	(500.3 to 500.6, 505.1 to 505.4)	A1 dep	6	AWFW; dependent on A1 \checkmark
(ii)	Given sample: 6 in 50/some of packets have weights below 500 grams	B1		or equivalent
	Confidence interval: CI > 500 Conclusion:	B1√		on CI in (b)(i)
	Statement does not appear justified	B1 dep	3	or equivalent. dependent on both B1 and B1 \checkmark
	Total		17	
	TOTAL		60	