Version: 1.0:0805

General Certificate of Education

Mathematics 6360

MS2B Statistics 2B

Mark Scheme

2005 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Key to mark scheme and abbreviations used in marking

M mark is for method

m or dM mark is dependent on one or more M marks and is for method M mark is dependent on M or m marks and is for accuracy

B mark is independent of M or m marks and is for method and accuracy

E mark is for explanation

√or ft or F follow through from previous

incorrect result MC mis-copy correct answer only MR mis-read

CSO correct solution only RA required accuracy AWFW anything which falls within FW further work

AWRT anything which rounds to **ISW** ignore subsequent work any correct form from incorrect work **ACF FIW** answer given given benefit of doubt AG BOD special case SC work replaced by candidate WR

OE OE FB formulae book A2,1 2 or 1 (or 0) accuracy marks NOS not on scheme -x EE deduct x marks for each error G graph

NMS no method shown c candidate
PI possibly implied sf significant figure(s)
SCA substantially correct approach dp decimal place(s)

Application of Mark Scheme

No method shown:

CAO

Correct answer without working mark as in scheme

Incorrect answer without working zero marks unless specified otherwise

More than one method / choice of solution:

2 or more complete attempts, neither/none crossed out mark both/all fully and award the mean

mark rounded down

1 complete and 1 partial attempt, neither crossed out award credit for the complete solution only

Crossed out work do not mark unless it has not been replaced

Alternative solution using a correct or partially correct method award method and accuracy marks as

appropriate

MS2B

MS2B Q	Solution	Marks	Total	Comments
1(a)		M1	าบเลา	0.5184 – 0.2674 =0.251
1(a)	$P(X=2) = \frac{e^{-2.6}(2.6)^2}{2!}$	IVI I		0.3184 - 0.2074 -0.231
	2:			
	=0.251	A1	2	
a	7. 7. (12)			- ·
(b)(i)	$Y \sim P_o (13)$	B1	1	Poisson and 13
(**)				
(11)	$P(Y \ge 15) = 1 - P(Y < 14)$	M 1		
	=1-0.6751	M1		
	=0.3249			
	=0.325	A1√		On their λ from b (i)
	4	711	4	on their whom o (i)
	$p = (0.3249)^4$	M∕î		
	0.0444 0.0440			On their $p(Y \ge 15)$
	p = 0.0111 to 0.0112			On then $p(1 \ge 13)$
	Total		7	
2	H_0 : time of day has no effect on the	B1		H ₀ : outcome does not depend on
	outcome of a frame of snooker			time of day
	outcome of a frame of shooker			For E's
	O_i E_i $ O_i - E_j = 0.5$ χ^2			
	30 25.92 3.58 0.4945	M1A1		For use of Yates' correction
	18 22.08 3.58 0.5805			attempted calculation of χ^2
	24 28.08 3.58 0.4564			(even if Yates' correction not used)
	28 23.92 3.58 0.5358	M1		(even if Tates correction not used)
	100 100 2.0672	M1		For $v = 1$ and χ^2
		A1		On their χ^2
	$\chi^2_{5\%}(1) = 3.841$	1.11		,
	2.07 < 3.841 : do not reject H ₀	BlBl√		
	No evidence to suggest that the time of			
	day has an effect on the outcome of a	A 1√		
	frame of snooker played by Syd.	E1√	10	
	Total		10	
3(a)	$\sum x = 15.8$			
	$\sum x^2 = 25.0592$			$\frac{1}{V}$ N σ^2
	$\overline{x} = \frac{15.8}{10} = 1.58$	B1		$\overline{X} \sim N\left(\mu, \frac{\sigma^2}{10}\right)$
	10			
	$s^2 = \frac{25.0592}{9} - \frac{10}{9} (1.58)^2$			(AWRT 0.011)
		В2	3	(s = 0.1028)
	= 0.01057		,	,
(b)	90% CI for μ	M1A1		1.58 ± 0.0596
	$1.58 \pm \frac{s}{\sqrt{10}} \times 1.833$	ft		f 0
	$\sqrt{10}$	D1		for $v = 9$ for t
	(1.52, 1.64)	B1 B1√	5	for interval
		A1	3	101 IIIICI VAI
	Total	111 4	8	
	Total		J	

Q	Solution	Marks	Total	Comments
4(a)	k = 0.1	B1	1	OE.
(b)	E(X) = 1	B1	1	
(c)	$P(X > 0) = 6 \times 0.1$ = 0.6	M1		
		A1	2	
(d)	P(X > 3.5) = 1 - P(X < 3.5) = 1 - 0.7	M1		
	= 0.3	A1 A1	3	
	Alternative solution $P(X < -3.5) + P(X > 3.5)$			
	$=\frac{0.5}{10}+\frac{2.5}{10}$	(M1)		
	$=\frac{3}{2}$	(A1)		
	10	(A1)		
	Total		7	

MS2B (co	Solution	Marks	Total	Comments
5(a)	$E(R) = \left(1 \times \frac{1}{4}\right) + \left(2 \times \frac{1}{2}\right) + \left(4 \times \frac{1}{4}\right)$	M1A1		$2\frac{1}{4}$
	(1) (2) (1)			$\frac{2}{4}$
	= 2.25			
	$E(R^2) = \left(1 \times \frac{1}{4}\right) + \left(4 \times \frac{1}{2}\right) + \left(16 \times \frac{1}{4}\right)$			
	=6.25			$6\frac{1}{4}$
				4
	$\therefore Var(R) = 6.25 - (2.25)^2$ = 1.1875	M1		_
	-1.1073	A1√	4	$1\frac{3}{16}$ (on their E (R))
(b)(i)				
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	B1		
	$P(X = x)$ $\frac{1}{4}$ $\frac{1}{2}$ $\frac{1}{4}$	Di		
	$\overline{4}$ $\overline{2}$ $\overline{4}$			
	- () (, 1) (1 1) (1 1)			
	$E(X) = \left(1 \times \frac{1}{4}\right) + \left(\frac{1}{4} \times \frac{1}{2}\right) + \left(\frac{1}{16} \times \frac{1}{4}\right)$	M1		
	$=\frac{1}{4}+\frac{1}{8}+\frac{1}{64}$			
	$=\frac{16+8+1}{64}$			
	$=\frac{25}{64}$	A1	3	AG
	64	AI	3	AU
(ii)	$A = \left(R + \frac{8}{R}\right) \times \frac{8}{R} = 8 + \frac{64}{R^2}$	M1		(Attempt at area)
	$\begin{pmatrix} R \end{pmatrix} R \qquad R^2$	1411		(Attempt at area)
	E(A) = E(8 + 64) = 8 + E(64)			
	$E(A) = E(8 + \frac{64}{R^2}) = 8 + E(\frac{64}{R^2})$	M1		
	$= 8 + 64 \times E(X)$			
	$=8+64\times\frac{25}{64}$			
	= 33			g., o
		A1	3	CAO
	Total		10	

Q	Solution	Marks	Total	Comments
6	$H_{_0}$: $\mu = 568$ $H_{_1}$: $\mu < 568$	B1		$X \sim$ contents of cartons of milk
	1% one-tailed test $v = 7$	B1		$X \sim N(568, \sigma^2)$ Under H_0 :
	$\overline{x} = \frac{4510}{8} = 563.75$	B1		$\overline{X} \sim N\left(568, \frac{\sigma^2}{n}\right)$
	$\Rightarrow s^2 = \frac{254256.8}{7} - \frac{8}{7} (563.75)^2$			
	$s^2 = 7.929$	B2		(s=2.816)
	$t = \frac{563.75 - 568}{2.816 / \sqrt{8}}$	M1		
	t = -4.27	A1ft		(AWFW =4.27to -4.26)
	$t_{crit} = -2.998$	B1ft		
	reject H ₀	A1√		On their t
	Evidence at the 1% level of significance to suggest that the average contents of the cartons have been reduced.	E1√	10	
	Total		10	

MS2B (c	IS2B (cont)						
Q	Solution	Marks	Total	Comments			
7(a)	f(t)	В3	3	B1 2 axes with scales B1 horizontal line at 0.2 from 0 to 3 B1 curve from 3 to 6			
(b)	P(T=3)=0	B1	1				
	$P(T \ge 3) = 1 - P(T < 3)$	M1		61 (6) 1, 2			
()	$=1-\frac{3}{5}$			$\int_{3}^{6} \frac{1}{45} t(6-t) dt = \frac{2}{5}$			
(D	$=\frac{2}{5}$	A1	2				
(d)	$\int\limits_{0}^{m}\frac{1}{5}dt=0.5$	M1		$P(T \le 3) = 0.6$			
	$\left(\frac{t}{5}\right)_0^m = 0.5$			\therefore 0 \le median < 3			
	$\frac{m}{5} - 0 = 0.5$			$\frac{1}{5}m = 0.5$			
	$m = 0.5 \times 5$			$m = 5 \times 0.5$			
	m = 2.5	A1	2	m = 2.5 AG			
(e)	$E(T) = \int_{0}^{3} \frac{1}{5}t \ dt + \int_{3}^{6} \frac{1}{45}t^{2} (6-t) \ dt$	M1					
	$= \left[\frac{1}{10}t^2\right]_0^3 + \left[\frac{2}{45}t^3 - \frac{1}{180}t^4\right]_3^6$	A1A1					
	$=\frac{9}{10}+1.65$						
	= 2.55	A1					
	$\therefore P(\text{median} < T < \text{mean})$ $= P(2.5 < T < 2.55)$	M1					
	$=0.05\times\frac{1}{5}$						
	= 0.01	A1	6				
	Total		14				

MS2B - AQA GCE Mark Sche	me, 2005 June series		

Q	Solution	Marks	Total	Comments
8(a)	$H_0: \mu = 35$			
	$H_1: \mu \neq 35$	B1		
	2 4 14 4 10/ 11 1			
	2 – tail test , 1% sig. level			
	under H_0 , $\bar{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$			
	$\overline{X} \sim N\left(35, \frac{144}{100}\right)$	B1		
	$z = \frac{37.9 - 35}{1.2}$	M1		$z = \frac{37.9 - 35}{\text{their } \sigma/\sqrt{n}}$
	z = 2.42	A1√		On their σ/\sqrt{n}
	$z_{crit} = \pm 2.5758$	B1		·
	do not reject H_0	A1√		On their z
	Evidence to support the claim that the mean age is 35 years.	E1√	7	
(b)	Accept H_0 when H_0 false Accepting the mean to be 35 years when it isn't.	B2	2	Allow B1 if not in context
	Total		9	
	Total		75	