

General Certificate of Education

Mathematics 6360

MM2B Mechanics 2B

Mark Scheme

2005 examination – June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Key to mark scheme and abbreviations used in marking

М	mark is for method				
m or dM	mark is dependent on one or more M marks and is for method				
А	mark is dependent on M or m marks and is for accuracy				
В	mark is independent of M or m marks and is for method and accuracy				
Е	mark is for explanation				
or ft or F	follow through from previous				
	incorrect result	MC	mis-copy		
CAO	correct answer only	MR	mis-read		
CSO	correct solution only	RA	required accuracy		
AWFW	anything which falls within	FW	further work		
AWRT	anything which rounds to	ISW	ignore subsequent work		
ACF	any correct form	FIW	from incorrect work		
AG	answer given	BOD	given benefit of doubt		
SC	special case	WR	work replaced by candidate		
OE	OE	FB	formulae book		
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme		
–x EE	deduct <i>x</i> marks for each error	G	graph		
NMS	no method shown	c	candidate		
PI	possibly implied	sf	significant figure(s)		
SCA	substantially correct approach	dp	decimal place(s)		

Application of Mark Scheme

No method shown:	
Correct answer without working	mark as in scheme
Incorrect answer without working	zero marks unless specified otherwise
More than one method / choice of solution:	
2 or more complete attempts, neither/none crossed out	mark both/all fully and award the mean mark rounded down
1 complete and 1 partial attempt, neither crossed out	award credit for the complete solution only
Crossed out work	do not mark unless it has not been replaced
Alternative solution using a correct or partially correct method	award method and accuracy marks as appropriate

Q	Solution	Marks	Total	Comments
1(a)	$12.5 = \lambda \times \frac{0.1}{0.4}$	M1A1		M1: Substitution A1: All correct
	$\lambda = 50$	A1	3	
(b)	$EPE = \frac{50 \times (0.1)^2}{2 \times 0.4}$	M1		M1 subs.
	= 0.625 J	A1		PI A1 all correct
	$0.625 = \frac{1}{2} \times 0.2 \times v^2$	M1		M1 use of principle ft EPE
	$v = 2.5 \text{ ms}^{-1}$	A1F	_	ft EPE
	v – 2.3 ms	A1F	5	IL EFE
	Total		8	
2(a)	\bigvee_{N}	B1	1	All forces shown and in correct direction (no extras)
	90g 35g 60 F			
(b)	R = 125g (=1225)	B1		
	$F = 0.3 \times R$	M1		Condone inequality
	F = 367.5N	A1F	3	ft slip, both vertical forces present (g missing B0 M1 A1F)
(c)	M (ground) $35g \times 1.5\cos 60^\circ + 90g \times x \times \cos 60^\circ$			
	$= N \times 3\cos 30^{\circ}$	M1A2		M1 attempt at moments eqn. Accept one force missing1 each term missing or incorrect. Condone repeated error, g missing or sin/cos mix.
	F = N	B1		
	Substitute to find <i>x</i>	m1		Subs. of candidate's N
	x = 1.582 metres	A1	6	Accept 1.6
	Total		10	
	lotal		10	

MM2B	(cont)			
Q	Solution	Marks	Total	Comments
3(a)(i)	$\frac{1}{2} \times 28 \times 1^2 + 28 \times 9.8 \times 2.5 = \frac{1}{2} \times 28 \times v^2$	M1A2		M1 all 3 terms
- ()(-)				– 1 each term incorrect
	$v = 7.07 \mathrm{ms}^{-1}$ (3 sf) (3 sf)	A1	4	Convincingly obtained
	softman D. 4			
	v(ms-1)			
	7.07-	B1		v increasing
				accept straight line, not horizontal
		B1		labels all correct $(1, 7.07, T)$
			_	
	1	B1	3	correct shape
	01 T r(sec)			
	Initial an array $= DE + KE$			
(b)	Initial energy = $PE + KE$			
	$\frac{1}{2} \times 28 \times 1 + 28 \times 9.8 \times 2.5$ $700 - \frac{1}{2} \times 28 \times v^2 = 350$	M1		
				M1 work/energy principle
	$700 - \frac{-2}{2} \times 28 \times v^2 = 350$	M1A1		A1 correct
	$v = 5 \text{ms}^{-1}$	A1F	4	ft slip eg sign
			•	to only of order
	Total		11	
	3.4			M1A0 if areas used M1 3 terms, condone ratio methods for
4(a)	$M(AB) 4Mg \times \frac{3d}{2} + Mg \times 2d = 5Mg \times \overline{y}$	M1A2		weights
	2			– 1 each term wrong
	$\overline{y} = 1.6d$	A1	4	
			•	
(b)	C C			
(2)	M B			
	2.4d			
	$D \left\langle \begin{array}{c} 2Aa \\ G \end{array} \right\rangle G$			
	\sim			
	\sim			
	$\tan \theta = \frac{GM}{GM}$	M1		Full method for an acute angle
	CM	1711		involving wallet
	$=\frac{2.4d}{2}$	A1A1		A1A0 for inversion
	3 <i>d</i>	A 175	4	
	$\theta = 38.7^{\circ}$	A1F	4	ft slip in subtraction
	Total		8	

MM2B (cont) Solution Marks Total **Comments** 0 $\frac{\mathrm{d}v}{\mathrm{d}t} = \frac{k}{v}$ 5 **B**1 $\int v \mathrm{d}v = \int k \mathrm{d}t$ Separation of variables involving t M1 $\frac{v^2}{2} = kt(+c)$ Integrate m1 A1 $t = 0, v = u, \therefore c = \frac{u^2}{2}$ m1 $v^2 = u^2 + 2kt$ 6 A1 Total 6 Acceleration $=\frac{v^2}{r}=\frac{(7.5)^2}{15}$ Attempt at $\frac{v^2}{2}$ 6(a)(i) M1 $= 3.75 \,\mathrm{ms}^{-2}$ A1 2 (ii) $2940 = 400 \times \frac{V^2}{15}$ M1A1 M1 use, A1 subs correct $V = 10.5 \text{ms}^{-1}$ A1 3 B1 Motorcycle and rider modelled as a particle **(b)** Size of rider/cycle compared with radius / **B**1 2 15m Acceleration or force $\left(\frac{v^2}{r}\right)$ must decrease (c) Force decrease \rightarrow radius increase B1 sc M1 For 2 marks, algebraic reference or so r must increase A1 2 convincing explanation Total 9 $\mathbf{v} = 2\cos 2t\mathbf{i} + 6\mathbf{j}$ 7(a)(i) M1A1 2 M1 differentiation (6t) Sum of squares, for v or v^2 $\left|\mathbf{v}\right| = \sqrt{4\cos^2 2t + 36}$ M1 (ii) A1F 3 ft trig term for v CAO A1 $\cos^2 2t = 0 \text{ or } \cos 2t = 0$ (iii) M1 $t = \frac{\pi}{4}$ 2 radians A1 $\mathbf{a} = -4\sin 2t \mathbf{i}$ Differentiation attempt (b)(i) M1 F = 0.25aM1 Used $\mathbf{F} = -\sin 2t \mathbf{i}$ A1F 3 ft v, see vector Direction is $\pm i$

B1

B1

Total

2 12

(ii)

 $|\sin 2t| \le 1$

MM2B	(cont)			
Q	Solution	Marks	Total	Comments
8 (a)	$\frac{1}{2}mU^2 = mga$	M1A1		Conservation of energy M1
	$U = \sqrt{2ga}$	A1F	3	ft slip (eg $h = 2a$)
(b)				
	$R = 0: mg\cos\theta = \frac{mv^2}{a}$	M1A1		M1 for $F = ma$ in general position
	$v^{2} = ag \times \frac{h}{a}$ $v^{2} = hg$	m1		Subs for $\cos \theta$
		A1F		ft errors in height
	$\frac{1}{2}m\left(\frac{5ag}{2}\right) = \frac{1}{2}mv^2 + mgh$	M1A1		M1 conservation of energy using u, v and h
	$\frac{5ag}{2} = 3gh$	ml		subs. for v^2
	$h = \frac{5a}{6}$	A1	8	
	Total		11	
	Total		75	