

General Certificate of Education

Mathematics 6360

MM2A Mechanics 2A

Mark Scheme

2005 examination – June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Key to mark scheme and abbreviations used in marking

М	mark is for method			
m or dM	mark is dependent on one or more M marks and is for method			
А	mark is dependent on M or m marks and is for accuracy			
В	mark is independent of M or m marks and is for method and accuracy			
E	mark is for explanation			
or ft or F	follow through from previous			
	incorrect result	MC	mis-copy	
CAO	correct answer only	MR	mis-read	
CSO	correct solution only	RA	required accuracy	
AWFW	anything which falls within	FW	further work	
AWRT	anything which rounds to	ISW	ignore subsequent work	
ACF	any correct form	FIW	from incorrect work	
AG	answer given	BOD	given benefit of doubt	
SC	special case	WR	work replaced by candidate	
OE	OE	FB	formulae book	
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme	
-x EE	deduct x marks for each error	G	graph	
NMS	no method shown	с	candidate	
PI	possibly implied	sf	significant figure(s)	
SCA	substantially correct approach	dp	decimal place(s)	

Application of Mark Scheme

mark as in scheme

zero marks unless specified otherwise

No method shown:

Correct answer without working Incorrect answer without working

More than one method / choice of solution:

2 or more complete attempts, neither/none crossed outmark both/all fully and award the mean
mark rounded down
award credit for the complete solution only1 complete and 1 partial attempt, neither crossed outaward credit for the complete solution onlyCrossed out workdo not mark unless it has not been replacedAlternative solution using a correct or partially correct methodaward method and accuracy marks as
appropriate

Q	Solution	Marks	Total	Comments
			Totai	
1(a)	$12.5 = \lambda \times \frac{0.1}{0.4}$	M1A1		M1: subs. A1: All correct
	$\lambda = 50$	A1	3	
(b)	EPE = $\frac{50 \times (0.1)^2}{2 \times 0.4}$	M1		Subs.
	= 0.625 J	A1		PI A1: all correct
	$0.625 = \frac{1}{2} \times 0.2 \times v^2$	M1		M1 use of principle
	$0.023 = \frac{-1}{2} \times 0.2 \times V$	A1F		ft EPE
	$v = 2.5 \text{ ms}^{-1}$	A1F	5	ft EPE
	Total		8	
2(a)	N $90g$ $35g$ 60° F	B1	1	All forces shown and in correct direction (no extras)
(b)	R = 125g (=1225)	B1		
	$F = 0.3 \times R$	M1		Condone inequality
	F = 367.5N	A1F	3	ft slip, both vertical forces present (g missing B0 M1 A1F)
(c)	M (ground)			
	$35g \times 1.5\cos 60^\circ + 90g \times x \times \cos 60^\circ$ $= N \times 3\cos 30^\circ$	M1A2		M1 attempt at moments eqn., accept one force missing1 each term missing or incorrect. Condone repeated error, g missing or sin/cos mix.
	F = N	B1		
	Substitute to find <i>x</i>	m1		Subs. of candidate's N
	x = 1.582 metres	A1	6	Accept 1.6
	Total		10	

MM2A/W (cont)

Q	Solution	Marks	Total	Comments
3(a)(i)	$T\cos 60^\circ = 0.4g$	M1A1		
	T = 7.84 newtons	A1	3	AG
(b)	$T\cos 30^\circ = 0.4 \ \omega^2 r$	M1A1		
	$r = \tan 60^{\circ}$	B1		
	$7.84 \times \cos 30^\circ = 0.4 \ \omega^2 \times \tan 60^\circ$	m1		Subs
	$\omega = 3.13$	A1	5	AG
(c)	$T = \frac{2\pi}{\omega} = 2.007$			
	$\approx 2 \text{ sec}$	B1	1	
	Total		9	
4(a)	$M(A)4Mg \times \frac{3d}{2} + Mg \times 2d = 5Mg \times \overline{y}$	M1A2		M1 3 terms (M1 A0 if areas used) Condone ratio methods for weights. -1 each term wrong
	$\overline{y} = 1.6d$	A1	4	$M(AB) 4Mg \times \frac{3d}{2} + Mg \times 2d = 5Mg \times \overline{y}$
(b)	D $2.4d$ G G G			
	$\tan \theta = \frac{GM}{CM}$	M1		Full method for an acute angle involving wallet
	$=\frac{2.4d}{3d}$	A1A1		A1A0 for inverse
	$\theta = 38.7^{\circ}$	A1F	4	ft slip in subtraction
	Total		8	
5	$\frac{\mathrm{d}v}{\mathrm{d}t} = \frac{k}{v}$	B1		
	$\int v \mathrm{d}v = \int k \mathrm{d}t$	M1		Separation of variables involving t
	$\int v dv = \int k dt$ $\frac{v^2}{2} = kt + c$	m1 A1		Integrate
	$t=0, v=u, \therefore c=\frac{u^2}{2}$	ml		
	$v^2 = u^2 + 2kt$	Al	6	
	Total	<u> </u>	6	

MM2A/V Q	Solution	Marks	Total	Comments
6(a)	$\mathbf{a} = 8 \cos t \mathbf{i} - 4 \sin t \mathbf{j}$	M1A1		M1 differentiation
	$\mathbf{F} = 2\cos t \mathbf{i} - \sin t \mathbf{j}$	A1	3	
(b)(i)	$ \mathbf{F} = \sqrt{(4\cos^2 t + \sin^2 t)}$ $= \sqrt{(3\cos^2 t + 1)}$	M1		Magnitude
	$=\sqrt{\left(3\cos^2 t+1\right)}$	m1		
		A1	3	CAO
(ii)	$I \le \mathbf{F} \le 4$	B1B1	2	B1 each value (at end of range)
	Total		8	
7(a)	$\frac{1}{2}mU^2 = mga$ $U = \sqrt{(2ga)}$	M1A1		Conservation of energy for M1 v = 0 for A1
	$U = \sqrt{(2ga)}$	A1F	3	ft slip (eg $h = 2a$)
(b)	$a \theta h$			
	$R = 0: mg\cos\theta = \frac{mv^2}{a}$	M1A1		M1 for $F = ma$ in general position
	$v^2 = ag \times \frac{h}{a}$ $v^2 = ag \times \frac{h}{a}$	m1		Subs for $\cos \theta$
	$v^2 = hg v^2 = hg$	A1F		ft errors in height
	$\frac{1}{2}m\left(\frac{5ag}{2}\right) = \frac{1}{2}mv^2 + mgh$	M1A1		M1 conservation of energy using u , v and h .
	$\frac{5ag}{2} = 3gh$	m1		Subs for v^2
	$h = \frac{5a}{6}$	A1	8	
	Total		11	
	Total		60	