

General Certificate of Education

Mathematics 6360

MM1B Mechanics 1B

Mark Scheme

2005 examination – June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Key to mark scheme and abbreviations used in marking

М	mark is for method				
m or dM	mark is dependent on one or more M marks and is for method				
А	mark is dependent on M or m marks and is for accuracy				
В	mark is independent of M or m marks and is for method and accuracy				
Е	mark is for explanation				
or ft or F	follow through from previous				
	incorrect result	MC	mis-copy		
CAO	correct answer only	MR	mis-read		
CSO	correct solution only	RA	required accuracy		
AWFW	anything which falls within	$\mathbf{F}\mathbf{W}$	further work		
AWRT	anything which rounds to	ISW	ignore subsequent work		
ACF	any correct form	FIW	from incorrect work		
AG	answer given	BOD	given benefit of doubt		
SC	special case	WR	work replaced by candidate		
OE	ŌE	FB	formulae book		
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme		
–x EE	deduct x marks for each error	G	graph		
NMS	no method shown	с	candidate		
PI	possibly implied	sf	significant figure(s)		
SCA	substantially correct approach	dp	decimal place(s)		
			· · · ·		

Application of Mark Scheme

mark as in scheme

zero marks unless specified otherwise

No method shown:

Correct answer without working Incorrect answer without working

More than one method / choice of solution:

2 or more complete attempts, neither/none crossed out
1 complete and 1 partial attempt, neither crossed out
Crossed out work
Alternative solution using a correct or partially correct method
award method and accuracy marks as appropriate

MM1B				
Q	Solution	Marks	Total	Comments
1(a)	$m\begin{bmatrix} 4\\2\end{bmatrix} + 3\begin{bmatrix} -1\\-1\end{bmatrix} = (m+3)\begin{bmatrix} 1\\V\end{bmatrix}$	M1		M1: Conservation of momentum equation
	4m - 3 = m + 3 AG	A 1		A 1: Correct momentum equation
	3m-6	M1		M1: Solving equation
		A1	4	A1: Correct <i>m</i> from correct working
	m = 2	111		Note: Deduct one mark for using mg
				instead of <i>m</i>
(b)	4 - 3 = 5V	M1		M1: Conservation of momentum equation
				for component containing V
	V. O.D	A1		A1: Correct equation
	V = 0.2	A1	3	A1: Correct V
	Total		7	
2(a)	$s_1 = \frac{1}{1} \times 15 \times 20 = 150$	N/1		
		M1		M1: Finding length of first stage
	$s_{0} = \frac{1}{2} \times 15 \times 80 = 600$			A 1: Both distances correct
	2	711		
	s = 600 + 150 = 750 m	A1	4	A1: Correct total distance
(b)(i)	$t = \frac{750}{50} = 50$ s	B1ft	1	B1: Correct time or their distance
(0)(1)	15^{-50}	DIII	1	correctly divided by 15
				concerty arviada by 15
(ii)	Delay $= 120 - 50 = 70$ s	B1ft	1	B1: Correct time or their previous time
()				correctly subtracted from 120 to give a
				positive answer
(c)	$15 \ 3 \ 0.1875 \ ms^{-2}$	M1		M1: Finding acceleration
	$a = \frac{1}{80} = \frac{1}{16} = 0.1875 \text{ ms}$	A1		A1: Correct acceleration
	$F = 500000 \times 0.1875 = 93800$ N (to 3sf)	M1		M1: Use of $F = ma$
		A1	4	A1: Correct force
	Total		10	
3(a)	2002 0 0 8	M1		M1: Use of cos or sin to find α with 2
	$2\cos\alpha = 0.8$			and 0.8
	$\cos \alpha = \frac{0.8}{2}$ AG	A1		A1: Correct equation
	$\overline{(08)}$			
	$\alpha = \cos^{-1} \left(\frac{0.0}{2} \right) = 66.4^{\circ}$	A1	3	A1: Correct α from correct working
(b)(i)	$v = \sqrt{2^2 - 0.8^2} = 1.83 \text{ ms}^{-1}$	M1		M1: Use of Pythagoras with 2 and 0.8 or
				trigonometry with angle from above
	$v = 2 \sin 66.4^{\circ} = 1.83 \text{ ms}^{-1}$	A1	2	A1: Correct velocity
(ii)	$t = \frac{14}{1000} = 7.64$ s	M1		M1: Use of distance over speed from
	1.83			previous
	Allow 7.65 s	A1	2	A1: Correct time
	Total		7	

MM1B	(cont)
------	--------

Q	Solution	Mark	Total	Comments
4(a)	9g - T = 9a	M1		M1: Equation for one particle
	T - 5g = 5a	A1		A1: Correct equation
	4g = 14a	M1		M1: Equation for other particle
	4.0	A1		A1: Correct equation
	$a = \frac{4g}{14} = 2.8 \text{ ms}^{-2}$ AG	A1	5	A1: Correct <i>a</i> from correct working
	14			
<i>a</i> .)	$T = 5 - 5 \times 2.9$			
(0)	$1 - 3g = 3 \times 2.8$	MI	•	M1: Substituting acceleration to find T
	T = 63 N	Al	2	A1:Correct tension
(c)	$s = \frac{1}{2} \times 2.8 \times 0.5^{2}$			M1: Constant acceleration equation with u
	2	MIAI		$= 0$ and $a \neq g$ to find s. Allow
	= 0.35 m			±answers
	$Total = 2 \times 0.35 = 0.7 m$	Al		A1: Correct equation
		Alft	4	A1: Correct distance
				A1: Doubling their distance to get total
			4.4	distance apart
	l'otal	D1	11	
5(a)	No air resistance/Unly gravity or weight	BI	1	B1: Acceptable assumption
(b)(i)	$0.2 \times 8 = 0.2 \times 9.8 = R$	М1		M1: Three term equation of motion
(1)(1)	$0.2 \times 8 - 0.2 \times 9.8 - K$			A 1: Correct equation
	R = 0.36 N		2	A1: Correct magnitude of the resistance
		AI	5	force
(b)(ii)	Increases as the speed increases	D 1	1	R1: Correct explanation
(0)(11)	filtreases as the speed mereases	DI	1	B1. Contect explanation
	2			
(c) (i)	$\pm 9.8 \text{ ms}^{-2}$	B1	1	B1: CAO
(ii)	Decreases towards zero	B1	1	B1: Correct explanation
	Tatal		7	*
6(0)	Pall is a particle/no spin	D1	/	P1: One assumption
0(a)	No air resistance/Only gravity or weight	DI R1	2	B1: Second assumption
	No all resistance/Only gravity of weight	DI	2	B1. Second assumption
(b)(i)	$24.5t - 4.9t^2 - 0$	M1		M1: Equation for vertical motion with
	24.51 +	1011		height zero
	$t = 0 \text{ or } t = \frac{24.3}{10} = 5 \text{ s}$	A 1		A1:Correct equation
	(4.9)	dM1		dM1: Solving for t
	AG	Al	4	A1: Correct time from correct working
			•	
(b)(ii)	$R = 10 \times 5 = 50 \text{ m}$	M1		M1: Use of horizontal component of
(~)()				velocity to find the range
		A1	2	A1: Correct range
(c)	20 = 10t	M1		M1: Horizontal equation
	t=2	A1		A1: Time to reach wall
	$k = 24.5 \times 2$ $4.0 \times 2^2 = 20.4$ m	dM1		dM1: Vertical equation for height with
	$n - 24.3 \times 2 - 4.9 \times 2 = 29.4 \text{ III}$			u = 24.5 and a negative acceleration
		A1	4	A1: Correct height
				č
(d)	No change as acceleration and initial	B1		B1: No change
	velocity do not change with the mass	B1	2	B1: Explanation
	Total		14	

MM1B (cont)				
Q	Solution	Marks	Total	Comments
				M1: Use of $\mathbf{v} = \mathbf{u} + \mathbf{a}t$ and
7(a)	$\mathbf{v} = 4\mathbf{j} + (3\mathbf{i} - 5\mathbf{j})t$	MIAI	2	$\mathbf{u} \neq 0$ or integration
				A1: Correct expression
(b)	$\mathbf{v} = 3t\mathbf{i} + (4 - 5t)\mathbf{j}$ 4 - 5t - 0	M1		M1: j component of velocity equal to zero
	t = 0.8 s	A1	2	A1: Correct <i>t</i>
(c)	v = 12i - 16i	M1		M1: Finding velocity when $t = 4$
		A1		A1: Correct velocity
	$v = \sqrt{12^2 + 16^2} = 20$ AG	dM1		dM1:Finding the magnitude
		A1	4	A1:Correct speed from correct working
	Total		8	
8(a)	R 🕨 🕈 T			
	F mg	B1	1	B1: Correct force diagram
(h)	$R + 20 \sin 30^\circ = 6g \cos 10^\circ$	M1		M1: Resolving perpendicular to the slope
(0)	$R = 6\pi \cos(10^\circ) - 20\sin^2(0^\circ)$	1411		with 3 terms
	$K = 0g \cos 10^{\circ} - 20 \sin 30^{\circ}$	A1		A1: Correct equation
	R = 47.9 N (to 3 st)	dM1		dM1 Solving for R
	AG	A1	4	A1: Correct R from correct working
	$F = \mu R$	M1		M1: Use of $\mathbf{E} = \mu \mathbf{P}$
(0)	$6 \times 0.4 = 20 \cos 30^\circ$ $6 a \sin 10^\circ$ μR	M1		M1: Use of $\Gamma = \mu R$ M1: Resolving parallel to slope to get 4
	$0 \times 0.4 = 20 \cos 30^{\circ} = 0^{\circ} \sin 10^{\circ} = \mu R$	A1		term equation of motion
		711		A1 [•] Correct equation
	$\mu R = 4.710$	A1		A1: Correct $F/\mu R$
	4.710 0.0002	dM1		dM1: Solving for <i>µ</i>
	$\mu = \frac{1}{47.91} = 0.0983$	A1	6	A1: AWRT 0.098
	T-4-1		11	
	10tal Total		75	
	l		13	