Version: 1.0: 1105

General Certificate of Education

Mathematics 6360

MFP4 Further Pure 4

Mark Scheme

2005 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Key to mark scheme and abbreviations used in marking

M mark is for method

m or dM mark is dependent on one or more M marks and is for method M mark is dependent on M or m marks and is for accuracy

B mark is independent of M or m marks and is for method and accuracy

E mark is for explanation

OE.

√or ft or F follow through from previous

incorrect result MC mis-copy correct answer only MR mis-read

CSO correct solution only RA required accuracy AWFW anything which falls within FW further work

AWRT anything which rounds to **ISW** ignore subsequent work **ACF** any correct form from incorrect work **FIW** answer given given benefit of doubt AG BOD special case SC work replaced by candidate WR

FB

A2,1 2 or 1 (or 0) accuracy marks NOS not on scheme -x EE deduct x marks for each error G graph NMS no method shown c candidate

PI possibly implied sf significant figure(s) SCA substantially correct approach dp decimal place(s)

Application of Mark Scheme

No method shown:

CAO

OE.

Correct answer without working mark as in scheme

Incorrect answer without working zero marks unless specified otherwise

More than one method / choice of solution:

2 or more complete attempts, neither/none crossed out mark both/all fully and award the mean

mark rounded down

1 complete and 1 partial attempt, neither crossed out award credit for the complete solution only

Crossed out work do not mark unless it has not been replaced

Alternative solution using a correct or partially correct method award method and accuracy marks as

appropriate

formulae book

MFP4

Q	Solution	Marks	Totals	Comments
1	E.g. (1) + (2) $\Rightarrow 5x + 8y = 15$	M1		Eliminating first variable
	and (3): $8x + 6y = 7$ E.g. $40x + 64y = 120$ 40x + 30y = 35	dM1		Solving 2×2 system
	$x = -1, \ y = 2\frac{1}{2}$	A1		Ft
	$z=3\frac{1}{2}$	A1	4	All 3 correct
	Alt. I (Cramer's Rule)			
	$\Delta = \begin{vmatrix} 2 & 7 & -3 \\ 3 & 1 & 3 \\ 8 & 6 & 0 \end{vmatrix}, \ \Delta_x = \begin{vmatrix} 5 & 7 & -3 \\ 10 & 1 & 3 \\ 7 & 6 & 0 \end{vmatrix},$			
	$\Delta_{y} = \begin{vmatrix} 2 & 5 & -3 \\ 3 & 10 & 3 \\ 8 & 7 & 0 \end{vmatrix} \text{ and } \Delta_{z} = \begin{vmatrix} 2 & 7 & 5 \\ 3 & 1 & 10 \\ 8 & 6 & 7 \end{vmatrix}$			
	102, – 102, 255 and 357 respectively	B1		Any one correct
	$x = \frac{\Delta_x}{\Delta}$, $y = \frac{\Delta_y}{\Delta}$, $z = \frac{\Delta_z}{\Delta}$	M1		At least one attempted numerically
	$x = -1$, $y = 2\frac{1}{2}$, $z = 3\frac{1}{2}$	A1A1	4	Any 2 correct ft; all 3 correct
	Alt. II (Inverse matrix method)			
	$C^{-1} = \frac{1}{102} \begin{bmatrix} -18 & -18 & 24 \\ 24 & 24 & -15 \\ 10 & 44 & -19 \end{bmatrix}$	M1 A1		M0 here if no inverse matrix is given
	$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = C^{-1} \begin{bmatrix} 5 \\ 10 \\ 7 \end{bmatrix} = \begin{bmatrix} -1 \\ 2.5 \\ 3.5 \end{bmatrix}$	M1 A1	4	
			4	
2(a)	Use of $r = \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 3 - 2\lambda \\ 1 + 6\lambda \\ -1 + 3\lambda \end{bmatrix}$	В1		
	Equating for λ : $\frac{x-3}{-2} = \frac{y-1}{6} = \frac{z+1}{3}$	M1 A1	3	
(b)	$\sqrt{2^2 + 6^2 + 3^2} = 7$	B1		
	d.c.'s are $\frac{-2}{7}$, $\frac{6}{7}$ and $\frac{3}{7}$	B1	2	Ft
	Total		5	

Q	Solution	Marks	Totals	Comments
3 (a)	Det $\mathbf{M} = -15 + 12 + 0 - (-12 + 0 - 30)$	M1		
	= 39	A1	2	
(b)(i)	$V(S_1) = 12 \times 39 = 468 \text{ cm}^3$	M1 A1	2	Ft
(ii)	$V(S_2) = 12 \times 39 \times \left(\frac{1}{3}\right)^2 = 52 \text{ cm}^3$	M1 A1	2	Ft
4()	A D Cl.	3.61.4.1	6	
4(a)	A: Reflection in $y = z$ B: Reflection in $y = 0$ (x-z plane)	M1 A1 M1 A1	4	
(b)(i)	$\mathbf{AB} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix}$	В1		≥ 5 entries correct
	$\begin{bmatrix} 0 & -1 & 0 \end{bmatrix}$	B1	2	All correct
(ii)	About the x-axis; through 90°	B1 B1	2	+/-; or 270°; or in radians
			8	
5(a)	$\overrightarrow{AB} = 2\mathbf{i} + 3\mathbf{j} + 7\mathbf{k}$, $\overrightarrow{AC} = 4\mathbf{i} - \mathbf{j} + \mathbf{k}$	B1 B1	2	Give one B1 if both – _{ve} correct
(b)	$\mathbf{n} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 3 & 7 \\ 4 & -1 & 1 \end{vmatrix} = 10\mathbf{i} + 26\mathbf{j} - 14\mathbf{k}$	M1 A1		Ft (a)'s answers
	$d = \begin{bmatrix} 1 \\ -2 \\ -4 \end{bmatrix} \bullet \begin{bmatrix} 10 \\ 26 \\ -14 \end{bmatrix} = 14 \text{ (e.g.)}$	M1 A1	4	Or divided throughout by 2 (etc.) Ft n
(c)	$\sin \theta / \cos \theta = \frac{\text{scalar product}}{\text{product of moduli}}$	M1		$5\mathbf{i} + \mathbf{j} + \mathbf{k}$ and $5\mathbf{i} + 13\mathbf{j} - 7\mathbf{k}$ ft n
	$Num^{r}. = 25 + 13 - 7 = 31$	B1		Ft correct unsimplified
	Denom ^r . = $\sqrt{27}.\sqrt{243}$ = 81	B1		Ft both correct, unsimplified surds
	$\theta = 22.5^{\circ}$	A 1	4	CAO
	Total		10	

MFP4 (co		Maulia	Tatal	Commonts
Q	Solution	Marks	Total	Comments
6(a)(i)	$\mathbf{b} \times \mathbf{a}$ is perp ^r . to both \mathbf{a} and \mathbf{b}	B1		Allow full as mlanguite and are 1
	Sc. prod. of two perp ^r . vectors,	B1	2	Allow full co-planarity or zero volume
	\mathbf{a} and $(\mathbf{b} \times \mathbf{a})$, is zero			arguments
(::)				
(ii)	$\mathbf{a} \bullet (\mathbf{b} \times (\mathbf{c} + \mathbf{a})) = \mathbf{a} \bullet [\mathbf{b} \times \mathbf{c} + \mathbf{b} \times \mathbf{a}]$	M1		Dath breakata armandad
	$= \mathbf{a} \bullet (\mathbf{b} \times \mathbf{c}) + \mathbf{a} \bullet (\mathbf{b} \times \mathbf{a})$	A1	2	Both brackets expanded Use of (i)'s result
	$= \mathbf{a} \bullet (\mathbf{b} \times \mathbf{c})$	Al	2	Use of (i) s result
	3 1 1			Or longer alt. method; e.g. via
(b)(i)	$\mathbf{p} \bullet (\mathbf{r} \times \mathbf{s}) = \begin{vmatrix} 3 & 4 & 1 \\ 2 & -5 & 2 \\ 7 & 2 & -3 \end{vmatrix} = 152$			or ronger are memou, e.g. via
(-)()	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1 A1	2	$\mathbf{r} \times \mathbf{s} = 11\mathbf{i} + 20\mathbf{j} + 39\mathbf{k}$
	/ 2 -3			-
		D.1	4	
(ii)	$\mathbf{p}, \mathbf{r}, \mathbf{s}$ lin. indt. since $\mathbf{p} \bullet (\mathbf{r} \times \mathbf{s}) \neq 0$	B1	1	
(iii)	V = 152	B1	1	ft (i)'s answer
(111)	V = 132	Di	1	it (i) s diiswei
(iv)	$t = s + p \implies$			
,	$\mathbf{p} \bullet (\mathbf{r} \times \mathbf{t}) = \mathbf{p} \bullet (\mathbf{r} \times [\mathbf{s} + \mathbf{p}])$			
	$= \mathbf{p} \bullet (\mathbf{r} \times \mathbf{s}) + \mathbf{p} \bullet (\mathbf{r} \times \mathbf{p})$	M1		Must expand, or identify with (a)
	$= \mathbf{p} \bullet (\mathbf{r} \times \mathbf{s})$			•
	since $\mathbf{p} \bullet (\mathbf{r} \times \mathbf{p}) = 0$ from (a)	A1	2	
			10	
7(a)	6.4 -7.2	M1		Attempt at det.
	$\begin{vmatrix} 6.4 & -7.2 \\ -7.2 & 10.6 \end{vmatrix} = 67.84 - 51.84 = 16$	A1	2	
(b)	Inv. pts. g.b. $x'=x$, $y'=y$	B1		
(~)	Subst ^g . in eqns. $6.4x - 7.2y = x$	M2		
	-7.2x + 10.6y = y	A1		
	y = 3	A1	5	
	$y = \frac{3}{4}x$	Al		
	Alt. I			
	Char. Eqn. is $\lambda^2 - 17\lambda + 16 = 0$	M1 A1		
	$\lambda = 1 \text{ or } 16$	A1	. . .	
	$\lambda = 1 \text{ for l.o.i.p.s} \Rightarrow 5.4x - 7.2y = 0$	M1 A1	(5)	i.e. $y = \frac{3}{4}x$
				T
	A14 TI			ignore $\lambda = 16$ work
	Alt. II			
	y = mx a l.o.i.p.s			
	$\begin{bmatrix} 6.4 & -7.2 \\ -7.2 & 10.6 \end{bmatrix} \begin{bmatrix} x \\ mx \end{bmatrix} = \begin{bmatrix} 6.4x - 7.2mx \\ -7.2x + 10.6mx \end{bmatrix}$	B1		
	-7.2x + 10.6mx = m(6.4x - 7.2mx) also	M1		
	$\Rightarrow 7.2m^2 + 4.2m - 7.2 = 0$	A1		
	$\Rightarrow (4m-3)(3m+4)=0$			
	$\Rightarrow y = \frac{3}{4}x \text{ or } y = -\frac{4}{3}x$	A1		
		D.1	(5)	
	Checking which one works	B1	(5)	
	Total		7	

Q	Solution	Marks	Total	Comments
8(a)	$\Delta = \begin{vmatrix} a+b+c & a+b+c & a+b+c \\ b+c & c+a & a+b \\ b-c & c-a & a-b \end{vmatrix}$	M1 A1		By $R_1' = R_1 + R_2$
	$= (a + b + c) \begin{vmatrix} 1 & 1 & 1 \\ b + c & c + a & a + b \\ b - c & c - a & a - b \end{vmatrix}$	A1		Factoring out correctly
	or $\begin{vmatrix} a+b+c & b & c \\ 2(a+b+c) & c+a & a+b \\ 0 & c-a & a-b \end{vmatrix}$			By $C_1' = C_1 + C_2 + C_3$ Etc.
	$= (a+b+c) \begin{vmatrix} 1 & b & c \\ 2 & c+a & a+b \\ 0 & c-a & a-b \end{vmatrix}$			Etc.
	Method for obtaining remaining factor $\Delta = 2(a + b + c)(a^2 + b^2 + c^2 - ab - bc - ca)$	M1 A1	5	2 can be anywhere
(b)	Noting $a = a$, $b = 3$, $c = 1$ Setting $\Delta = 0$	B1 M1		
	i.e. $0 = 2(a+4)(a^2-4a+7) \implies a = -4$	A1		
	Showing $(a-2)^2 + 3 \neq 0$ so only one value of a	M1 A1	5	Ignore incorrect quadratic factors until here CSO
	Alt. $\begin{vmatrix} a & 3 & 1 \\ 4 & 1+a & a+3 \\ 2 & 1-a & a-3 \end{vmatrix} = 2a^3 - 18a + 56$	B1		
	Equating to zero + solving attempt	M1		
	$2(a+4)(a^2-4a+7) = 0 \implies a = -4$	A1	(5)	On dissert of
	$(a-2)^2 + 3 > 0 \implies$ no other real solutions.	M1 A1	(5)	Or discriminant < 0
	Total		10	

MFP4 (co	Solution	Marks	Total	Comments
9(a)	$\begin{bmatrix} 2 & 7 \\ 4 & k \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 9 \\ 4+k \end{bmatrix} = \lambda \begin{bmatrix} 1 \\ 1 \end{bmatrix} \text{ when } k = 5,$ $\lambda = 9$	M1 A1 A1	3	$\mathbf{M} \times \text{given evec.}$ Ft
(b)	Char. Eqn. is $\lambda^2 - 7\lambda - 18 = 0$ $(\lambda - 9)(\lambda + 2) = 0$ and 2^{nd} eval. is -2	M1 A1 A1		
	Or det $\mathbf{M} = \lambda_1 \lambda_2 \implies -18 = 9\lambda_2$ $\implies \lambda_2 = -2$			Or via trace $\mathbf{M} = \lambda_1 + \lambda_2$
	Subst ^g . $\lambda = -2 \implies 4x + 7y = 0$ \implies evec. $\begin{bmatrix} 7 \\ -4 \end{bmatrix}$	M1 A1	5	
(c)	$\mathbf{D} = \begin{bmatrix} -2 & 0 \\ 0 & 9 \end{bmatrix}, \ \mathbf{U} = \begin{bmatrix} 7 & 1 \\ -4 & 1 \end{bmatrix}$	B1 B1	2	Ft (alternatives possible)
(d)	$\mathbf{U}^{-1} = \frac{1}{11} \begin{bmatrix} 1 & -1 \\ 4 & 7 \end{bmatrix}$	B1	1	Ft non-trivial U's
(e)	$\mathbf{M}^{2n} = \begin{bmatrix} 7 & 1 \\ -4 & 1 \end{bmatrix} \begin{bmatrix} (-2)^{2n} & 0 \\ 0 & (9)^{2n} \end{bmatrix} \cdot \frac{1}{11} \begin{bmatrix} 1 & -1 \\ 4 & 7 \end{bmatrix}$	В1		For \mathbf{D}^{2n}
	$= \begin{bmatrix} 7 \times 4^{n} & 81^{n} \\ -4^{n+1} & 81^{n} \end{bmatrix} \cdot \frac{1}{11} \begin{bmatrix} 1 & -1 \\ 4 & 7 \end{bmatrix}$ or $\begin{bmatrix} 7 & 1 \\ -4 & 1 \end{bmatrix} \cdot \frac{1}{11} \begin{bmatrix} 4^{n} & -4^{n} \\ 4 \times 81^{n} & 7 \times 81^{n} \end{bmatrix}$	M1 A1		CAO any correct form
	Thus $a = \frac{1}{11} \left\{ 7 \times 4^n + 4 \times 81^n \right\}$	A1	4	i.e. $p = \frac{7}{11}$, $q = \frac{4}{11}$
	In its original form, the question asked for the following conclusion to be made: Since a is an integer, and hcf $(4, 11) = 1$,			
	$7 \times 4^{n-1} + 81^n$ is a multiple of 11			
	Total		15	
	Total		75	