

January Series

Mark Scheme

Mathematics/Statistics

MS/SS1A/W

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2005 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 and a registered charity number 1073334. Registered address AQA, Devas Street, Manchester. M15 6EX. Dr Michael Cresswell Director General

Key to mark scheme and abbreviations used in marking

М	mark is for method				
m or dM	mark is dependent on one or more M marks and is for method				
А	mark is dependent on M or m marks and is for accuracy				
В	mark is independent of M or m marks and is for method and accuracy				
Е	mark is for explanation				
or ft or F	follow through from previous				
	incorrect result	MC	mis-copy		
CAO	correct answer only	MR	mis-read		
CSO	correct solution only	RA	required accuracy		
AWFW	anything which falls within	$\mathbf{F}\mathbf{W}$	further work		
AWRT	anything which rounds to	ISW	ignore subsequent work		
ACF	any correct form	FIW	from incorrect work		
AG	answer given	BOD	given benefit of doubt		
SC	special case	WR	work replaced by candidate		
OE	ŌE	FB	formulae book		
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme		
-x EE	deduct <i>x</i> marks for each error	G	graph		
NMS	no method shown	с	candidate		
PI	possibly implied	sf	significant figure(s)		
SCA	substantially correct approach	dp	decimal place(s)		

MS/SS1	A/W
--------	-----

Q	Solution	Marks	Total	Comments
1(a)	The takings appear to increase slightly as			
	the air temperature increases	B1		OE
	Weak positive (linear) correlation			Comments on ranges of values
	between air temperature and takings			of x and $y \Rightarrow B0$
	One (or two) unusual results	B1	2	OE
(b)	Monday 10	B1	1	CAO; accept point (4, 312)
(c)	r = 0.817 to 0.818	B3	3	AWFW
				for attempts at Σx , $\Sigma x^2 \times 5$ or $S_{xx} \times 3$ M1
				for attempted use of correct formula for r
				M1
				for answer A1
				If Monday 4 identified in (b), then:
				r = 0.0156 to 0.0157 scores M2
				If no Monday removed, then:
				r = 0.318 to 0.319 scores M1
	Tomporature at eacther time			Or a consible alternative
(u)	Number of other/compating stalls			Of a sensible alternative
	Month/time of year			Number of sustances $\rightarrow E0$
	Rainfall/snow			Weather \rightarrow E0
	Publicity	E 1	1	$\begin{array}{ccc} \text{Weather} \rightarrow & \text{E0} \\ \text{Begulation of town} \rightarrow & \text{E0} \\ \end{array}$
	Total	LI	1 7	ropulation of lown ⇒ E0
2	Mean = 3.75	B1	,	$\Gamma A \Omega$ $\Sigma fr = 150$
_	Standard deviation = 1.84 to 1.87	B2	3	$\frac{2}{4} \text{WFW} \qquad \qquad \Sigma f x^2 = 698$
			-	$s^2 = -3.47 \text{ to } 3.48$
				$S_{n-1} = 5.47105.48$
				and $s_n^2 = 3.38$ to 3.39
				Substitution of values into correct formula
				for variance or SD or
				SD = 3.38 to 3.48 AWFW M1
	Total		3	

MS/SS1A/W (cont)

Q	Solution	Marks	Total	Comments
3(a)(i)	$X \sim N(\mu, 4^2)$			
	$\mu = 106$			
	$P(X < 110) = P\left(Z < \frac{110 - 106}{2}\right)$	M1		Standardising (109.5, 110 or 110.5) with
				106 and $(\sqrt{4}, 4 \text{ or } 4^2)$ and/or $(106 - x)$
	= P(Z < 1)	A1		CAO; ignore sign
	= 0.841	A1	3	AWRT (0.84134)
(ii)	P(underweight) = P(X < 100)	M1		Use of AWFW 99 to 100
	$= P(Z < -1.5) = 1 - \Phi(1.5)$	m1		Area change
	= 1 - 0.93319 = 0.0668 to 0.067	A1	3	AWFW (0.06681)
(b)	$2\% \Rightarrow z = -2.0537$	B1		AWFW 2.05 to 2.06; ignore sign
	$z = \frac{100 - \mu}{\mu}$	M1		Standardising AWFW 99 to 100 with μ
	- 4			and 4
	Thus $100 - \mu$ _ 2.0527			Equating <i>z</i> -term to <i>z</i> -value;
	1 mus = -2.0537	mı		not using 0.02, 0.98 or $ 1-z $
	Thus $\mu = 108.2$ to 108.3	A1	4	AWFW
	Total		10	
4(a)	Scatter Diagram 8, 9 or 10 points plotted	B2	2	5, 6 or 7 points plotted B1
		D.		
(b)	b = 7.49 to 7.51	B2 D2		AWFW; accept 7.5
	a = 14.1 to 14.0	D2		A W F W for attempts at $\sum r \sum r^2 \times 4$ or $\sum r \times 2$ M1
	Regression Line			for attempts at $2x$, $2x \times 4$ or $S_{xx} \times 2$. With
	$(implied) \ge 2$ points calculated	M1		for attempted use of correct formula for b
				M1
	or use of point $(\overline{x}, \overline{y})$			
	eg $x = 0$ $y = 14.3$ & $x = 25$ $y = 201.9$			A1 for answers
	straight line drawn	A1	6	
(c)	<i>a</i> : time to travel to and from area			
(0)	from/to depot	E1		OE
	*			Both correct but reversed \Rightarrow E1
	<i>b</i> : (average) time to deliver a/one parcel			OE
	(within area)	E1	2	Proportional to packages \Rightarrow E0
	Total		10	

Question 4 (a) & (b)

MS/SS1A/W (cont)

Q	Solution	Marks	Total	Comments
5(a)	$n = 40$ $\overline{x} = 72$ $s = 32$			
	$99\% \implies z = 2.5758$	B1		AWFW 2.57 to 2.58
	CI for μ is $\overline{x} \pm z \times \frac{(s \text{ or } \sigma)}{\sqrt{n \text{ or } (n-1)}}$	M1		Use of Must have $(\div \sqrt{n})$ with $n > 1$
	Thus 72 $\pm 2.5758 \times \frac{32}{\sqrt{40 \text{ or } 39}}$	A1√		ft on <i>z</i> only
	(58.8 to 59.1, 84.9 to 85.2)	A1	4	AWFW
(b)	$Y \sim (53, 42^2)$			
(i)	Large value of standard deviation, relative to mean.	E1		OE
	suggests negative times are likely	E1	2	OE
(ii)	Due to large sample size			<i>n</i> > 30
	OR by Central Limit Theorem	E1	1	either CLT
(iii)	\overline{Y} has mean, $\mu = 53$	B1		CAO
	and variance, $\frac{\sigma^2}{n} = \frac{42^2}{60} = 29.4$	B1		CAO; $SD = AWFW 5.42$ to 5.43
	$P(\overline{Y} < 60) = P\left(Z < \frac{60 - 53}{\sqrt{29.4}}\right)$	M1		Standardising (AWFW 59 to 60) with 53 and $\left(\sqrt{\frac{42^2}{n}} \text{ or } \frac{42^2}{n}; n > 1\right)$
	= P(Z < 1.29) = 0.899 to 0.903	A1	4	and/or $(53 - x)$ AWFW (0.90165)
			11	

Q	Solution	Marks	Total	Comments
6(a)(i)	p = 0.5			
	Attempted use of B(14, 0.5) in (a)(i) or (ii)	M1		
	$P(X \le 10) = 0.971$ to 0.972	B1		AWFW (0.9713)
(ii)	$P(X > 5 \text{ and } X < 10) = P(6 \le X \le 9)$			
	$= P(X \le 9)$	M1		Identification of at least 6, 7, 8 and 9
	$-P(X \le 5)$	M1		Identification of exactly 6, 7, 8 and 9
	= 0.9102 - 0.2120 = 0.698 to 0.699	A1	5	AWFW (0.6982)
(b)	$P(Y=7) = {\binom{n}{(0.4)^7}} (0.6)^{n-7}$	M1		Correct expression for
	(1, 1, 1) (7) (0.4) (0.6)	1011		B(7; <i>n</i> , 0.4) with $n \neq 7$
	$(28)_{(2,1)^7}(2,2)^{21}$			Fully correct expression
	$= \begin{pmatrix} 7 \\ 7 \end{pmatrix} (0.4) (0.6)$	A1		may be implied
	= 0.0425 to 0.0427	A1	3	AWFW (0.042556)
(c)	Different numbers of days	F 1	1	
	in different months	El	1	Accept <i>n</i> not fixed OE
7(a)(i)	M A S T	Total	9	
/(a)(l)	$\frac{M}{M}$ $\frac{A}{38}$ $\frac{5}{369}$ $\frac{1}{303}$ 710			
	F 26 275 643 944			
	T = 64 = 644 = 946 = 1654			
	P(F) = 944/1654 (= 0.571)	M1	1	Use of
(ii)	$P(F \cap A) = 275/1654 (= 0.166)$	M1	1	Use of
(:::)				
(111)	$P(F \mid A) = \frac{\text{their (11)}}{(AA/A)}$	M1		Use of
	/1654	1011		
	= 275/644 or 0.426 to 0.428	A1	2	CAO/AWFW (0.4270)
(h)	$710 \times 944 \times 943 \times 3$	M1		Use of one combination of
(0)	$P(MFF) = \frac{710 \times 944 \times 945 \times 9}{1654 \times 1652 \times 1652}$	1011		<i>MFF</i> (without replacement)
	1034×1033×1032	M1		Use of multiplier of 3
	= 0.419 to 0.421	A1	3	AWFW (no fraction) (0.4198)
		D1	1	
(C) (I)	remaie (and) Academic	ВІ	1	CAU
(ii)	Male	B1		Not female \Rightarrow B0
	OR			'OR' must be clearly stated or implied
	Academic (or both)	B1	2	Addition of 'not both' \Rightarrow B0
	Total		10	
	TOTAL		60	