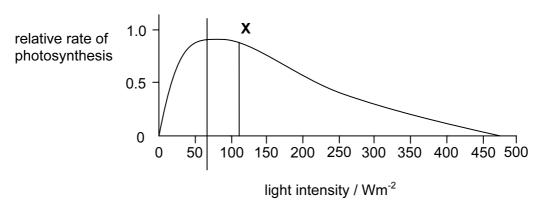


UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Subsidiary Level and Advanced Level

MARINE SCIENCE 9693/03

Structured Questions
SPECIMEN MARK SCHEME


For Examination from 2009

1 hour 30 minutes

MAXIMUM MARK: 75

1 (a) (i) line at about $65 \pm 5/Wm^{-2}$

[1]

(ii) another factor/named factor has become limiting; reaction rate cannot increase any further;

[2]

(b) (i) 4 of:

at the sea surface the light is at highest intensity;
may cause photo-inactivation of chlorophyll;
or cause motile phytoplankton to migrate deeper;
as light enters water some of it is absorbed so intensity falls;
just below surface the light intensity is still high so photosynthesis rate is highest;
as depth increases the light intensity decreases;
photosynthesis rate falls with decrease in light until insufficient for photosynthesis;

[4]

(ii) 2 of:

at Y photosynthesis production equals respiration use; below this depth photosynthesis could not meet demand of respiration; AW reserves would be used up so plant would die;

[2]

(c) 2 of:

dinoflagellates are able to swim to the surface; enable the plant to reach higher light intensities for more photosynthesis; show cycles of movement/ sinking and then swimming upwards;

[2]

[Total: 11]

© UCLES 2007 9693/03/SM/09

2 (a) (i) calculations:

correct conversion of units; (1mm=
$$1000\mu m$$
, 1s= $1,000ms$) [1]

rates:

$$\frac{1000}{4980000}$$
 = 2 × 10⁻⁴ µm/ms = 0.0002µm/ms; or $\frac{1}{83}$ = 0.012mm/min [1]

$$\frac{12}{48} = 0.25 \mu \text{m/ms}$$
 or $\frac{0.012}{0.0008} = 15 \text{mm/min}$ [1]

ratio:
$$\frac{0.25}{0.0002}$$
 or $\frac{15}{0.012} = 1250 \times \text{ faster}$ [1]

(ii) ref. to idea that:

some cells too far from the external environment;

these cells receive insufficient supply raw materials/named material to survive;

(iii) ref. to idea that:

transport system links specialised exchange surfaces/named surfaces to all cells; mass transfer of materials enables constant supply to cells; [2]

(b) 3 of:

species Z has shortest distance between water and blood; diffusion of oxygen will be faster; to allow more respiration/ATP production; enabling species to use muscles more (for greater activity)

[Total: 11]

[3]

[2]

3 (a)

environment	stage of life cycle
nest in stream bed/reeds	eggs
between gravel in a stream bed	alevin
(reeds) freshwater streams	parr
estuaries	smoult/adults (at spawning)

[4]

(b) (i) 2 of:

salmon develop into different sexes from hatching; grouper develops into female first and lays eggs; then develops into male and produces sperm;

[2]

(ii) eggs of salmon are less visible to predators (in a nest); eggs of grouper float on the surface of ocean/in plankton

[2]

[Total: 8]

- **4 (a) (i)** a sequence of DNA nucleotides coding for the production of a specific polypeptide/protein;
- [1]

(ii) all the alleles of the genes (inherited) of an organism;

[1]

(iii) transfer of DNA/gene from one species to another;

[1]

(b) (i) 2 of:

some genes require a promoter to function; the promoter is a site where RNA attaches before transcription; unless promoter attached, gene will not operate in new location

[2]

(ii) the injected genetic material/genes/DNA may not attach to the host DNA/chromosome; marker gene can be used to detect cells that have the gene/DNA attached;

[2]

(c) 1 of:

selective breeding transfers whole genome wide range of variants obtained/unwanted genes transferred; takes many generations;

[1]

[Total: 8]

© UCLES 2007 9693/03/SM/09

5 (a) (i) new/young fish added to the population; at a specific stage of the life cycle; [2] (ii) initially increased mortality increases recruitment; reduces when level of fishing too high/overfishing; [2] 2 of: fewer fish in the population reduces competition for food/oxygen (or predation by older fish); more young fish survive to reach the age for recruitment; overfishing reduces breeding population too much; [2] **(b)** the number of fish removed is balanced by recruitment; [1] (c) reference to idea 3 of: as fish age they grow and increase in biomass; as fish age some are lost due to mortality; highest population biomass is 'mid age' as there are still a lot of fish with higher body mass; falls in oldest and heaviest fish as there are very few in the population; [3] [Total: 10] 6 (a) (i) 1 of: fry obtained from the wild/estuaries; [1] no processed food supplied/depends on natural food supply; (ii) fish feed on plants; fertilisers encourage the growth of algae/plants; [2] **(b)** 2 of: fast average growth rate; high commercial value/good return on investment; high consumer demand; tolerant to confinement: stock available [2] (c) (i) 2 of: fish stocks in sea are declining; less energy efficient in terms of feeding; may spread disease from one fish to another; [2] (ii) 2 of: populations/ catch of fish can vary widely; nutrient content can be controlled more easily; sustainable crop; can track source (for food labelling) [2] [Total: 9] 7 (a) (i) sewage provides a source of nutrients that encouraged the growth of the phytoplankton; [1] (ii) high levels of photosynthesis from the phytoplankton; [1] (iii) large amount of dead phytoplankton sink to the bottom of bay; decomposition of phytoplankton consumes oxygen; [2] **(b)** layer of warm water floats the top of thermocline; cuts off lower levels from atmospheric oxygen; [2] (c) 3 of idea that: all organisms are likely to die at 0mg oxygen as needed for respiration/energy release; only species highly adapted to low oxygen content likely to survive at 1/2mg; variety/species diversity would decrease (as oxygen dependent die); low oxygen tolerant species may increase in number; [3] [Total: 9] 8 (a) the protection/ preservation/ management/ restoration; of wildlife and of natural resources such as forests, soil, and water; [2] (b) (i) 2 of idea that; over fishing reduces the stocks below a sustainable level pollution introduces toxins/disease organisms that kill marine organisms; loss of some organisms causes balance of ecosystem to change/disrupts food chains; dredging removes bottom layers that may supply nutrients/removes habitats; [2] (ii) 2 of idea: raising awareness of threatened species; informing about the dangers of human activities/named activities; improving recognition of threatened species; [2] (c) 3 of: organisms important to humans are part of an ecosystem; part of food chain/web that involves other organisms; may cause killing of organisms seen as a threat to human resource; if other organisms ignored/killed may disrupt food chain; contribution of other organisms to ecosystem may be essential to survival of human resource in a way as yet not known; [3]

[Total: 9]

© UCLES 2007 9693/03/SM/09