OXFORD CAMBRIDGE AND RSA EXAMINATIONS Advanced Subsidiary GCE ### HUMAN BIOLOGY 2856 Blood, Circulation and Gaseous Exchange Monday 6 JUNE 2005 Morning 1 hour Candidates answer on the question paper. Additional materials: Electronic calculator Ruler (cm/mm) | | | Candidate | |----------------|---------------|-----------| | Candidate Name | Centre Number | Number | | | | | | | | | TIME 1 hour #### **INSTRUCTIONS TO CANDIDATES** - Write your name in the space above. - Write your Centre number and Candidate number in the boxes above. - Answer all the questions. - Write your answers, in blue or black ink, in the spaces provided on the question paper. - Read each question carefully before starting your answer. #### **INFORMATION FOR CANDIDATES** - The number of marks is given in brackets [] at the end of each question or part question. - You will be awarded marks for the quality of written communication where this is indicated in the question. - You may use an electronic calculator. - You are advised to show all the steps in any calculations. | FOR EXAMINER'S USE | | | |--------------------|------|------| | Qu. | Max. | Mark | | 1 | 9 | | | 2 | 8 | | | 3 | 9 | | | 4 | 14 | | | 5 | 10 | | | 6 | 10 | | | TOTAL | 60 | | This question paper consists of 14 printed pages and 2 blank pages. #### Answer all the questions. Fig. 1.1 shows a light micrograph of a blood smear taken by a laboratory worker. 1 An image has been removed due to third party copyright restrictions Details: An image of a light micrograph of a blod smear taken by a laboratory worker Fig. 1.1 Name cells A and B. A B[2] (b) Explain why blood is classed as a tissue. | 2856 | Jun | 0 | |------|-----|---| | (c) | Describe how a blood smear, such as that shown in Fig. 1.1, is prepared for viewing under a light microscope. | |-----|---| [5] | | | [Total: 9] | - 2 Haemoglobin is a protein molecule made from four long chains of amino acids. - (a) In the space below, draw the generalised structure of an amino acid. | | | [2] | |-----|-------|---| | (b) | (i) | Name the two groups that occur in all amino acids. | | | | 1 | | | | 2[2] | | | (ii) | State the name of the bond formed between two amino acids. | | | | [1] | | | (iii) | Name the type of reaction that would break the chemical bond between the two amino acids. | | | | [1] | | (c) | | re two differences between the secondary and tertiary structure of the protein ins in haemoglobin. | | | 1 | | | | | | | | | | | | 2 | | | | | | | | | [2] | | | | [Total: 8] | #### **BLANK PAGE** **3 (a)** Table 3.1 shows some of the components of blood and tissue fluid. Complete the table using the words *present* or *absent*. Table 3.1 | | components of blood and tissue fluid | | |-------------------|--------------------------------------|--------------| | | blood | tissue fluid | | red blood cells | present | | | white blood cells | | present | | water | | present | | plasma proteins | present | | [4] (b) Fig. 3.1 shows a simplified diagram of a capillary and the surrounding tissue fluid. hydrostatic pressure = 4.3 kPa hydrostatic pressure = 1.6 kPa capillary tissue fluid hydrostatic pressure = 1.1 kPa Fig. 3.1 On Fig. 3.1, indicate with an arrow the direction of blood flow. [1] | (c) | Using the information in Fig. 3.1, explain in terms of water potential, the net movement of fluid between the capillary and the tissue fluid. | | |-----|--|--| [41] | | | | [4] | | | | [10tal. 9] | | - 4 (a) Fig. 4.1 gives information about the relative thickness of the walls of three chambers of the heart; - left ventricle - right ventricle - · right atrium. Fig. 4.1 | (i) | State which of these three chambers are identified by the letters ${\bf D},{\bf E}$ and ${\bf F}.$ | |------|---| | | D | | | E | | | F[3] | | (ii) | Explain, with reference to its function, why the wall of chamber ${\bf F}$ is much thicker than the walls of chambers ${\bf D}$ and ${\bf E}$. | | | | | | | | | | | | | | | | | | [3] | One of the most valuable tools used for studying the heart and identifying heart abnormalities, is the electrocardiogram (ECG). Fig. 4.2 shows an ECG trace obtained from a healthy person. ## A graph has been removed due to third party copyright restrictions Details: A graph showing an ECG trace obtained from a healthy person Fig. 4.2 | (b) | Des | cribe the | electrical activity | in the heart during the P wave and the QRS complex: | |-----|-------|------------|---|--| | | (i) | during tl | ne P wave, | | | | | ••••• | | | | | | ********** | | | | | | ••••• | | | | | (ii) | during tl | he QRS complex. | | | | | ••••• | ••••• | | | | | ••••• | | | | | | ••••• | ••••• | [4] | | (c) | accı | | • | out, various precautions must be taken to ensure ution may be telling the person to sit still during the | | | Exp | lain why t | his is important. | | | | •••• | ••••• | | | | | ••••• | ••••• | | | | | ••••• | | | [2] | | | •••• | ••••• | • | [Z] | | The ECG does not identify all abnormalities of the heart. | (d) | |--|-----| | Suggest one condition that it will not diagnose and explain why. | | | | | | | | | | | | [2] | | | [Total: 14] | | ### **BLANK PAGE** - There are 62 000 preventable deaths in the United Kingdom every year because of poor blood pressure control. - If high blood pressure (hypertension) was controlled to a target pressure of 150/90 mmHg, 21 000 deaths from strokes and 41 000 deaths from heart attacks could be prevented. - More than one third of non-fatal strokes and heart attacks would also be prevented so that the total reduction in strokes and heart attacks would be 120 000 per year. | (a) | Outline how hypertension may contribute to the development of coronary heart disease (CHD). | |-----|---| | | | | | | | | | | | | | | | | | [3] | | (b) | In this question, one mark is available for the quality of spelling, punctuation and grammar. | | | Describe how a sphygmomanometer is used to measure blood pressure and how the results are interpreted. | [6] | |--------------------------------------| | Quality of Written Communication [1] | | [Total: 10] | | 6 | | | |---|--|---| | | This question has been removed due to third party copyright restrictions | 1 | | | Details: | 1 | | | Question taken from www.ash.org.uk | 1 | | | | ! | | | | ! | | | | | | | | | | | | i | | | | i | | | | | | | | 1 | | | | 1 | | | | | | has been removed due to third party copyright restrictions | |--| | Details: | | Question taken from www.ash.org.uk | #### Copyright Acknowledgments: CIE Science Diagrams For Examiners. 2140005. Version 1.0. 2001. CD ROM www.hertmed.com/literature/journal2.htm Q1. Fig. 4.2 Q6. www.ash.org.uk OCR has made every effort to trace the copyright holders of items used in this Question paper, but if we have inadvertently overlooked any, we apologise.