

QUALIFICATIONS ALLIANCE

Mark scheme January 2003

GCE

Biology/ Human Biology A

Unit BYA1

Copyright © 2003 AQA and its licensors. All rights reserved.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 and a registered charity number 1073334 Registered address: Addleshaw Booth & Co., Sovereign House, PO Box 8, Sovereign Street, Leeds LS1 1HQ Kathleen Tattersall: Director General

Unit 1: Molecules, Cells and Systems

Question 1

(a)	(i)	Short wavelength; [<i>Allow: small wavelength</i>] Good/ high resolution: [<i>Allow: description of resolution</i>]	2
			-
	(ii)	Cut through a different plane;	1
(b)	(i)	Mitochondria supply energy/ ATP;	
		For active transport of mineral ions/	
		Absorption of ions against concentration gradient;	
		Movement/ contraction of muscles;	3
		[<i>Reject: thermodynamically incorrect answers about 'making' or 'producing' energy</i>]	
		Total 6	marks
Ques	tion 2		
(a)		(Molecules) with little (kinetic) energy;	
		Move slowly;	
		Few collisions (between enzyme and substrate)/fewer enzyme-substrate	
		complexes formed;	3
		(Note: Question refers to slow rate at 5°C and answer must be in this context.)	
(b)		Heating would cause bonds (maintaining tertiary structure)/named bonds to b	eak;
		Denaturing enzyme/ altering tertiary structure;	,
		Altering shape of active site; max	2
		(Note: if answers clearly relate to lactose, they are incorrect)	
		Total	5 marks
Ques	tion 3	Total	5 mai

(a)	(i)	Arteries divide to form arterioles;	1
	(ii)	Blood goes to (an organ) along an artery and leaves by a vein;	1
(b)	(i)	Multiply (mean) length by total cross-sectional area;	1
	(ii)	2 marks - Correct answer of 6.45/6.5%;; [<i>Accept: 6.4%/6%</i>] 1 mark - Incorrect answer but clearly derived from volume of blood in capillaries divided by total volume of blood in all vessels;	2
(c)	(i)	Muscle/ skin/ lungs/ heart;	1
	(ii)	Muscle; Contracts; Vasoconstriction/ reduces diameter (of arteriole supplying capillaries);	3
			Total 9 marks

Question 4

(a)		Mauve/ purple/ violet/ lilac; It is a protein; [<i>Reject: blue or pink colour</i>]		2
(b)	(i)	Fell as it was used up/ broken down/ changed;		1
	(ii)	Substrate becomes limiting/ falls/ gets less; Fewer collisions/ complexes formed;		2
	(iii)	Initial rate slower; Levelling out at same value;		2
(c)		Enables a comparison to be made; As the rate/concentration changes as reaction progresses; Cells/ catalase may become damaged/affected by heat;	max Total 9 1	2 narks
Oues	tion 5			
~ (a)		$\frac{A \times (C_1 - C_2)}{t} [Allow: words]$		1

(b)	(i)	Large surface area for diffusion;	1
	(ii)	Red blood cells close to capillary wall/ thin capillary wall; Short diffusion path/ distance for oxygen to diffuse; Longer time for diffusion to take place/ diffusion is slow;	3
(c)		Less oxygen/ concentration gradient lower; Therefore less diffusion; [Accept: reverse argument for carbon dioxide]	2
			Total 7 marks

Question 6

(a)	(i) (ii)	4; Not made of identical units/ monomers/ made of fatty acids and glycerol;	1 1
(b)	(i) (ii)	 A O(xygen); B C(arbon); No double bonds/ every carbon joined to two hydrogens/ four other atoms; 	2 1
(c)	(i)	2 marks - Correct answer of 0.0000025/ 2.5 x 10 ⁻⁶ ;; 1 mark - Incorrect answer but clearly derived from volume divided by surface area; [<i>Note: Assume units are mm unless otherwise stated</i>]	2
	(ii)	Head hydrophilic/ attracted to water/ polar; Tail hydrophobic/ avoids/ shuns water/ non-polar; [<i>Allow: only one mark for limited references to 'loving' and 'hating' water</i>]	2
		Total 0 r	

Total 9 marks

Question 7

(a)		Red blood cell	Bacterial cell		
		No cell wall	Contains ribosomes;		
		No capsule	Cansule:		
		No flagellum	Flagellum [.]		
		No mesosomes	Mesosomes:		
		No plasmid	Plasmid:		
		No genetic material/ DNA	Genetic material/ DNA [•]	max	2
		[Note: Must compare like with like]		mux	2
(b)		No nucleus/ DNA;			
		(Nucleus) codes for protein/ can't make	e RNA;		
	OR	No ribosomes/ rough endoplasmic retion	culum;		
		Protein is made/ synthesised/ translated (on ribosomes);			
	OR	No mitochondria;			
		(Mitochondria) supply energy/ ATP for making proteins; max 2			
(c)	(i)) Red blood cells do not contain endoplasmic reticulum/ do not have			
		membrane-bound organelles;			1
		[Note: not enough to say 'because ther	e aren't any']		
	(ii)	Water potential inside cell more negati	ve/ lower;		
		Water moves in by osmosis/ diffusion;			2
(d)	(i)	Have a greater surface area to volume	ratio/ shorter distance to centre;		1
	(ii)	Cell membrane of abnormal cell not as	strong/ spectrin strengthens men	nbrane;	1
(e)		1 Amino acid based on carbon with for	ur groups attached;		
		2 Amino/ NH ₂ and carboxyl/ COOH;			
		3 R-group/ side chain + hydrogen;			
		4 R-group differs from one amino acid	to another;		
		5 Amino acids joined by condensation	;		
		6 Bond formed between NH ₂ and COC	DH;		
		7 Involves removal of molecule of wat	er;		
		8 H from NH_2 and OH from COOH;		max	6
			Тс	otal 15 m	narks

Question 8

			1
(ii)	D/pulmonary vein;		1
	Filling because valve between artery and ventricle closed; Valve between atrium and ventricle/ cuspid valve open; [Note: All answers must be in context of filling. Answers specifically relating to left side are incorrect.]		2
	Pressure increases and volume stays constant;		1
	Pressure in ventricle (becomes) higher than pressure in aorta; [Or converse]		1
	ventricle contracts; Produces increase in pressure; Blood leaves venticle/ goes into aorta (and volume falls); Through open valve;	max	3
	 (Wall of) capillary consists of single layer of cells; These <u>cells</u> are flattened/ very thin/ squamous/ pavement; Fluid/ small molecules can pass through; Proteins/ red blood cells cannot pass through; (Fluid) out by hydrostatic/ blood pressure; Water potential/ osmosis draws (fluid) back in; Link between osmosis / water potential and blood proteins; As hydrostatic pressure greater than osmotic effect; 	max	6
		Total 15 n	narks
	(ii)	 (ii) D/pulmonary vein; Filling because valve between artery and ventricle closed; Valve between atrium and ventricle/ cuspid valve open; [<i>Note: All answers must be in context of filling.</i> <i>Answers specifically relating to left side are incorrect.</i>] Pressure increases and volume stays constant; Pressure in ventricle (becomes) higher than pressure in aorta; [<i>Or converse</i>] ventricle contracts; Produces increase in pressure; Blood leaves venticle/ goes into aorta (and volume falls); Through open valve; 1 (Wall of) capillary consists of single layer of cells; 2 These <u>cells</u> are flattened/ very thin/ squamous/ pavement; 3 Fluid/ small molecules can pass through; 4 Proteins/ red blood cells cannot pass through; 5 (Fluid) out by hydrostatic/ blood pressure; 6 Water potential/ osmosis draws (fluid) back in; 7 Link between osmosis / water potential and blood proteins; 8 As hydrostatic pressure greater than osmotic effect; 	 (ii) D/pulmonary vein; Filling because valve between artery and ventricle closed; Valve between atrium and ventricle/ cuspid valve open; [Note: All answers must be in context of filling. Answers specifically relating to left side are incorrect.] Pressure increases and volume stays constant; Pressure in ventricle (becomes) higher than pressure in aorta; [Or converse] ventricle contracts; Produces increase in pressure; Blood leaves venticle/ goes into aorta (and volume falls); Through open valve; max 1 (Wall of) capillary consists of single layer of cells; 2 These <u>cells</u> are flattened/ very thin/ squamous/ pavement; 3 Fluid/ small molecules can pass through; 4 Proteins/ red blood cells cannot pass through; 5 (Fluid) out by hydrostatic/ blood pressure; 6 Water potential/ osmosis draws (fluid) back in; 7 Link between osmosis / water potential and blood proteins; 8 As hydrostatic pressure greater than osmotic effect; max