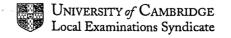


NOVEMBER 2002


GCE Advanced Level GCE Advanced Subsidiary Level

MARK SCHEME

MAXIMUM MARK: 50

SYLLABUS/COMPONENT: 9709 /5, 8719 /5

MATHEMATICS (Mechanics 2)

Page 1	Mark Scheme	Syllabus	Paper
	A & AS Level Examinations – November 2002	9709, 8719	5

1	r= 4cm	B1	
	Uses $v = wr$	M1	
	Speed is 20cm s (FT if $\Gamma = \frac{1}{3}x$ candidates perp. distance from B) A1	3

2	(i)	Takes moments about B [$T \cos 60^{\circ} \times 2 = 10 \text{g x 1}$]	M1	
		Obtains tension as 100 N	A1	2
	(ii)	Uses Hooke's Law (for expression in is or I only)	M1	
		Obtains $100 = 200(3 - L)/L$ or $100 = 200 x/(3 - x)$	Alsc	
		Obtains natural length as 2 m	Al	3

3	(i)	$x = 10t, y = -5t^2$		
		Eliminates t to find an equation in x and y (allow if condidate deriver)	M1	
		Obtains $y = -x^2/20$ (Alku 81/3 for putting D=0 and V= to in traj. equation)		3
	(ii)	Uses $\tan \theta = dy/dx$ or $\tan \theta = \dot{y}/\dot{x}$	M1	
		Obtains $x = 30$ when $y = -45$, or $t = 3$ when $y = -45$, or $x = 10$ and $y = (\pm)30$		
		Obtains angle as 108.4° (108.435) or 71.6° (71.565)	A1	3

4	a=4	?/0.8	[= 20]		B1	
	Uses	Newton's 2 nd law horizontally t	o obtain a 3 term eq	uation	Ml	
	Obtai	$ns (T_P + T_Q) cos 30^\circ = 0.5x20$		$[T_P + T_Q = \frac{20}{\sqrt{3}}]$	Alft	
	Reso	ves forces vertically to obtain a	3 term equation		M1	
	Obtai	$ns T_P \cos 60^\circ = T_Q \cos 60^\circ + 5$		$[T_P - T_Q = 10]$	A1	
Alternatively for the above 4 marks Uses Newton's 2 nd law perpendicular to BQ to obtain a 3 term equation Obtains $T_P \cos 30^\circ - 0.5g \cos 30^\circ = 0.5x20 \cos 60^\circ$ [$T_P = 5 + \frac{10}{\sqrt{3}}$] A2 § [SR Allow A1 with 1 sign or trigonometric error]			t			
	Obtai	ns tension in PB as 10.8 N	(10.7735)		A1	6

NB Use of equal tensions considere B), MI, Ao, MI, Ao at moit.

Page 2	Mark Scheme	Syllabus	Paper
	A & AS Level Examinations – November 2002	9709, 8719	5

1. 1.

5	(i)	GPE = $0.075 g(d \sin 30^{\circ})$ or $0.075 g(d + x) \sin 30^{\circ}$	B1	
		EPE = $1.5(d-2)^2/2x^2$ or $1.5x^2/2x^2$	B1	
		Uses the principle of conservation of energy to form an equation with GPE	M1*	
	and EPE terms $\left[\frac{3}{8}d = \frac{3}{8}(d-2)^2 \text{ or } \frac{3}{8}(2+x) = \frac{3}{8}x^2\right]$			
		Attempts to solve a quadratic equation in d $[(d-1)(d-4)=0]$ or attempts to solve a quadratic equation in x and uses $d=x+2$ $[(x+1)(x-2)=0$ and $d=2+2$	M1 dep	
		Obtains distance as 4m	A1	5
	(ii)	Obtains the tension at the lowest point as 1.5 N ft for $1.5(d-2)/2$	B1 ft	
		Uses Newton's 2 nd law to obtain a 3 term equation	M1	
		Obtains $1.5 - 0.075g \sin 30^\circ = 0.075a$	A1 ft	
		Obtains acceleration as 15ms ⁻²	A1	4

Page 3	Mark Scheme	Syllabus	Paper
- rugo o	A & AS Level Examinations – November 2002	9709, 8719	5

6	(i)	Uses Newton's 2^{nd} law and $a = v \frac{dv}{dx}$, and attempts to integrate	M1*	
		$[(1/10) v dv/dx = -v/200]$ $v = -x/20 \qquad (+C)$	A1	
		Uses $v(0) = 5$ to find C	M1	
			dep	
		Obtains $v = -x/20 + 5$ ($a = e \cdot f$.)	Al	4
	(ii)	Uses $v = dx/dt$, separates the variables and integrates	M1*	
		$\left[\int \frac{1}{100 - x} dx = \int \frac{1}{20} dt \right]$		
		Obtains $\ln(100 - x) = -t/20 + C$	Al	
		Uses $x = 0$ when $t = 0$ to obtain $t = 20[\ln 100 - \ln(100 - x)]$	A1	
L		ft only if the term in x is logarithmic	ft	
		For taking anti-logarithms throughout the equation $[100 - x = 100e^{-u^2 t}]$	M1	
		NB 14100-2)=-150+C -> 100-0= 6 10 46 10 40	dep	<u> </u>
		For taking anti-logarithms throughout the equation [$100 - x = 100e^{-t/20}$] $NR / N(1 - x) = -t/20 + C \longrightarrow 100 - x = 0 / x + 0 / x M = 0$ Obtains $x = 100(1 - e^{-t/20})$ ($\alpha = 0.5$.)	A1	5
		ly for the above 9 marks on's 2^{nd} law with $a = dv/dt$, separates the variables and integrates		
$\left[\int \frac{1}{v}\right]$	$dv = -\int$	$\left[\frac{1}{20}dt\right]$ M1*		
		r = -t/20 (+C) A1		
		when $t = 0$ to obtain $t = 20[\ln 5 - \ln v]$		
		e term in v is logarithmic A1ft		
For	taking	anti-logarithms throughout the equation $[v = 5e^{-t/20}]$ M1 dep		1.
Use	s v = dv	x/dt and integrates $\left[x = \int 5e^{-t/20}dt\right]$ M1*	}	
Obt	ains x =	$= -100 e^{-t/20} (+C)$ A1		
Use	s x = 0	when $t = 0$ to obtain $x = 100(1 - e^{-t/20})$		
Elin	ninates	the exponential term from $x = 100(1 - e^{-t/20})$ and $v = 5e^{-t/20}$ to obtain an		
equ	ation in	[x = 100(1 - v/5)] M1 dep		
Obt	ains v	=-x/20+5 A1		1
	(iii)	$= -x/20 + 5$ A1 $x = 100(1 - e^{-t/20}) \text{ and } e^{-t/20} \text{ is +ve for all } t \rightarrow x < 100$	B1	1

NR If is is solved as in scheme and then in, is solved using the alternative method, the 5 marks awarded fortills. From the alternative method are MIX (AG), Al (not FT), MI(dep), MIX (uses V=oft) and integrate or subst. for V from is, (AG) Al (Modep)(AG).

Page 4	Mark Scheme	Syllabus	Paper
	A & AS Level Examinations – November 2002	9709, 8719	5

7	(i)	Uses $(A_1 \pm A_2)x = A_1x_1 \pm A_2x_2$ to find x	M1	
		[(25x5 + 15x5)x = 25x5x12.5 + 15x5x2.5]		
		Obtains $x = 8.75$	A1	
		Uses $(A_1 \pm A_2)y = A_1y_1 \pm A_2y_2$ to find y	M1	
		[(25x5 + 15x5)y = 25x5x2.5 + 15x5x12.5]		
		Obtains $y = 6.25$	A1	4
	(ii)	States or obtains $\mu = \tan \alpha$ for prism on point of sliding	Bl	
		States or obtains $\tan \alpha \le x/y$ for prism not toppled	M1	
		Eliminates tan α from μ = tan α and tan $\alpha < x/y$, and substitutes for x and y [$\mu < 8.75/6.25$] $Chroins Fand \leq \frac{8.75}{6.25}$	Aı	
		Coefficient of friction is less than 7/5 (convincing explantion for ine quality	A1	4
	(iii)	States or obtains $\tan \beta = y/x$ for prism on point of toppling	MI	
		States or obtains $\mu > \tan \beta$ for prism not sliding (or on the point of sliding)	81	
		Eliminates $\tan \beta$ from $\tan \beta = y/x$ and $\mu > \tan \beta$, and substitutes for x and y $[\mu > 6.25/8.75]$ to obtain the least value of the coefficient of friction as 5/7	Al	3

(convincing explanation for inequality)