Surname	Centre Number	Candidate Number
Other Names		2

GCE A level

1215/04

GEOLOGY – GL5
Thematic Unit 4
Geology of the Lithosphere

A.M. TUESDAY, 16 June 2015

ONE of TWO units to be completed in 2 hours

Section A
Section B

For Examiner's use only		
Question	Maximum Mark	Mark Awarded
1.	15	
2.		
3.	25	
4.		
Total	40	

ADDITIONAL MATERIALS

In addition to this and one other examination paper, you will need a calculator.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.

Write your name, centre number and candidate number in the spaces at the top of this page. Answer **question 1** in Section A (15 marks) and **one** question from Section B (25 marks).

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question. You are reminded of the necessity for good English and orderly presentation in your answers.

SECTION A

1. Figure 1a is a simplified geological map of the island of Sumatra in the east Indian Ocean. Figure 1b is a cross section (X–Y) showing the distribution of earthquake foci across the Sumatran subduction zone.

Sunda Siberut Trench Island Sumatran Fault

X

V

O

Depth (km)

Vertical scale = horizontal scale

(1215-04)

© WJEC CBAC Ltd.

Examiner only

(a)	Desc	cribe the distribution of earthquake foci in Figure 1b . [3]
(b)	(i)	Draw and label on Figure 1b a line to show the probable position of the top of the subducted Indian Oceanic Plate. [2]
	(ii)	The Indian Oceanic Plate bends before it subducts. This may result in tensional forces at shallow depths in the plate. Label one earthquake focus $(T \rightarrow)$ on Figure 1b which may result from such a process. [1]
	(iii)	Earthquakes at shallow depths can also be generated as rising magma intrudes into brittle rocks. Label one earthquake focus (M \rightarrow) on Figure 1b which may result from such a process. [1]
(c)		chain of islands stretching from Simeulue to Enggano on Figure 1a forms part of a ern day accretionary prism. Explain the evidence on Figure 1a to support this idea. [2]
•••••		

(d) The **Pre-Tertiary rocks** of Sumatra can be divided into three main rock units (**Table 1**). These three units indicate that accretion has been occurring in the Sumatra region for more than 100 Ma. Explain the evidence in **Table 1** which supports this idea. [6]

	Pre-Tertiary Rock Unit	Explanation of evidence
1.	Altered peridotites, gabbros, dolerites and basalts (often pillowed)	
2.	Greywackes (turbidites) and fine-grained marine sediments	
3.	Andesite and basalt volcanics closely associated with reef limestones	

Table 1

SECTION B

Answer one question only.

Write your answer in the remaining pages of this booklet.

- 2. (a) Describe how the rate and direction of seafloor spreading might be calculated from
 - · patterns of ocean magnetic anomalies
 - mantle plume (hotspot) data.
 - (b) Evaluate the effectiveness of these two methods in determining the rate **and** direction of seafloor spreading.

[25]

- 3. (a) Describe the differences between oceanic and continental lithosphere in terms of
 - composition
 - thickness
 - age.
 - (b) "Our knowledge of the composition of the continental lithosphere is limited." Evaluate this statement.

[25]

4. "The strength of rocks and how they deform in the lithosphere is controlled solely by temperature."
 Evaluate the validity of this statement.

© WJEC CBAC Ltd. (1215-04) Turn over.

•••••••••••••••••••••••••••••••••••••••

	· · · · · · ·
	• • • • • • •
	• • • • • • •

	Examiner only
END OF PAPER	

BLANK PAGE