| Surname | Centre
Number | Candidate
Number | |-------------|------------------|---------------------| | Other Names | | 2 | ### GCE AS/A level 1211/01 # GEOLOGY – GL1 Foundation Unit A.M. MONDAY, 11 May 2015 1 hour | For Exa | aminer's us | e only | |----------|-----------------|-----------------| | Question | Maximum
Mark | Mark
Awarded | | 1. | 15 | | | 2. | 14 | | | 3. | 15 | | | 4. | 16 | | | Total | 60 | | #### **ADDITIONAL MATERIALS** In addition to this examination paper, you will need: - · the Mineral Data Sheet; - a calculator. #### **INSTRUCTIONS TO CANDIDATES** Use black ink or black ball-point pen. Write your name, centre number and candidate number in the spaces at the top of this page. Answer **all** questions in the spaces provided in this booklet. #### **INFORMATION FOR CANDIDATES** The number of marks is given in brackets at the end of each question or part-question. You are reminded that marking will take into account the use of examples and the quality of communication used in your answers. VP*(S15-1211-01) #### Answer all questions. 1. Figure 1a is a map showing an igneous rock intruded into orthoquartzite. Table 1b shows how the average crystal size varies between A and B on Figure 1a. Figure 1a | Distance from A (metres) | 0 | 50 | 100 | 150 | 200 | 250 | |----------------------------|-----|----|-----|-----|-----|-----| | Crystal size (millimetres) | 0.5 | 5 | 6 | 7 | 7.5 | 8 | Table 1b [2] - (a) Refer to Figure 1a and Table 1b. - (i) Complete the graph in **Figure 1c** by plotting the data in **Table 1b** and joining up the points with a curved line. [2] - (ii) Explain the variation in crystal size between locations **A** and **B** in **Figure 1a**. [2] (b) Figure 1d shows a specimen from the igneous intrusion shown in Figure 1a. The specimen was collected at location B on Figure 1a. Figure 1d - (i) Using the Mineral Data Sheet, identify mineral **F**. [1] - (ii) Which **three** terms below best describe the igneous rock shown in **Figure 1d**? Tick only **three** boxes. (iii) Name the igneous rock shown in **Figure 1d**. [1] © WJEC CBAC Ltd. (1211-01) Turn over. (c) (i) Complete **Figure 1e** below to show the texture of a sample of metaquartzite with a mean crystal size of 1.5 mm representative of location **C** on **Figure 1a**. [3] Figure 1e | (11) | D on Figure 1a . Explain your answers. | and
[4] | |------|---|---------------| | | Mineral composition | | | | | • • • • • • • | | | | | | | Texture | | | | | | | | | • • • • • • • | | | | · · · · · · · | 15 # **BLANK PAGE** © WJEC CBAC Ltd. (1211-01) Turn over. Examiner only 2. Figure 2 shows a roadside rock exposure with the fossils and structures contained in each of the sedimentary units. Figure 2 Refer to Figure 2. | (a) | (i) | Name the morphological features of graptolite E | B labelled P and Q. | [2] | |-----|-------|--|---|------| | | | P Q . | | | | | (ii) | Describe two differences in the morphological f | features of graptolites A and C . | [2] | | | | | | | | | ••••• | | | •••• | | | •••• | | | | | | | | | | | (b) | (i) | The graptolites in Figure 2 have been replaced by a <i>brass yellow coloured mineral with a metallic lustre</i> . Using the Mineral Data Sheet, identify the mineral most likely to have replaced the original organic matter of the graptolites. [1] | |-----|-----------|--| | | (ii) | All the graptolite fossils shown in Figure 2 are casts. Describe the geological processes that have led to this type of preservation. [3] | | |
(iii) | Graptolites are considered to be useful zone fossils in relative dating and correlation in the Palaeozoic. Using Figure 2 and your knowledge, describe three factors that enable graptolites to be useful as zone fossils. | | | | | | (c) | state | strata in Figure 2 are overturned. Explain the reasons that would support this ement. [3] | | | | | 14 **3. Figure 3a** shows an ocean ridge with a simplified pattern of magnetic reversals in the rocks of the oceanic crust. **Figure 3b** shows the actual pattern of magnetic reversals in the oceanic crust of the Atlantic Ocean and **Figure 3c** shows the time scale for magnetic reversals in the oceanic crust over the last 4.5 million years. Figure 3a (a) (i) Name the type of plate margin shown in **Figure 3a**. Tick only **one** box. [1] © WJEC CBAC Ltd. | ı | Examine only | |---|--------------| | | | | | (ii) | Describe the pattern shown by the magnetic reversals in Figure 3a . [2] | |-----|-------|---| | | (iii) | Explain how a record of the Earth's magnetic field may be preserved in the igneous rocks of the ocean floor. [3] | | | (iv) | Explain the age distribution of the rocks of the oceanic crust shown in Figure 3b . [3] | | (b) | (i) | With reference to Figure 3c state how long the current period of normal polarity has lasted. [1] | | | (ii) | Using Figure 3c state how many magnetic reversals have occurred during the last 2 million years. Calculate the mean time between magnetic reversals in years. [2] Number of reversals | | | | Mean time between reversals years | | | (iii) | Refer to Figure 3b and suggest two reasons to explain why the actual pattern of magnetic reversals on the sea floor is more complex than the simplified model shown in Figure 3a . [3] | | | ••••• | | | | | | 4. Figure 4 is a geological map. The land in the area is flat. Figure 4 | (a) | (i) | Refer to Figure 4 . State which two of the following statements are correct . Tick only two boxes. | [2] | |-----|------|--|-----| | | | The fold is an anticline | | | | | The fold has limbs of equal dips | | | | | The fold is a syncline | | | | | The fold is younger than the faults | | | | | The fold has been overturned | | | | | The northern limb of the fold dips at less than 60° | | | | (ii) | Draw in the axial plane trace of the fold to the east of fault F1 on Figure 4 . | [2] | Examiner only | (b) | (i) | Fault F1 involves vertical movement with a downthrow to the east. State the evidence from Figure 4 for F1 being downthrown to the east. [2] | |-----|--------------|---| | | | Evidence | | | (ii) | F1 is a thrust fault. State the evidence for this from Figure 4. [2] Evidence | | (c) | (i) | Fault F2 shows only strike-slip movement (horizontal displacement). Describe one piece of evidence from Figure 4 to support this statement. [2] | | | (ii) | Measure the amount of horizontal displacement that has occurred along fault F2 in metres and state whether the movement has been to the left or right. [2] | | | | Displacement metres Movement to the | | (d) | | udent came to the following conclusions about the geological structures shown in tre 4. State whether or not you agree with each conclusion and give reasons for your vers. | | | The | fold and fault F1 were formed at the same time and by the same type of stress | | | | | | | F2 is | s younger than F1 | | | | | **END OF PAPER** 16 ## GCE AS/A level **GEOLOGY** MINERAL DATA SHEET FOR USE WITH GL1 AND GL2a April/May 2015 | Name | Cleavage/Fracture | Hardness | Density
(g cm ⁻³) | Streak | Lustre | Colour | Other diagnostic properties | |------------------------------------|---------------------------------------|----------------|----------------------------------|-----------------------------|--------------------|--|---| | Quartz RF | F *none/conchoidal | 2 | 2.65 | scratches streak
plate | vitreous | colourless, milky but variable | hexagonal prisms terminated by pyramids | | Orthoclase
Feldspar RF | *2 good, 90 | 9* | 2.6 | scratches streak
plate | vitreous | flesh, pink, white | *simple twin | | Plagioclase
Feldspar RF | F *2 good, 90 | 9* | 2.7 | scratches streak
plate | vitreous | creamy-white, grey, colourless | *repeated multiple twin | | Muscovite Mica RF | F *1 perfect (basal) | *2.5 | 2.7-3.1 | white | pearly | colourless or pale yellow,
green or brown | *flaky | | Biotite Mica RF | F *1 perfect (basal) | *2.5-3 | 2.7-3.1 | white | pearly | brown/black | *flaky | | Hornblende RF | F *2 good, 60/120 | *5-6 | 3.0-3.5 | scratches streak plate | vitreous | black, dark green | prismatic crystals | | Augite RF | F *2 good, 90 | *5-6 | 3.2-3.5 | scratches streak
plate | vitreous | greenish black | prismatic crystals | | Olivine | F none/conchoidal | 2-9* | 3.2-4.3 | scratches streak
plate | vitreous | *olive green | | | Chiastolite/
Andalusite | poor 1/
uneven fracture | 7.5 | 3.1-3.3 | scratches streak plate | vitreous | pearly grey/pink | needle crystals with square
x-sections, black centre | | Garnet | none | *6.5-7.5 | 3.5-4.3 | scratches streak plate | vitreous | red/brown | *12 sided crystals - each face rhomb shaped | | Chlorite | 1 good (basal) | z _* | 2.6-2.9 | white | pearly | green | fibrous/flaky as massive,
tabular crystals | | Calcite | *3 good, not at 90,
perfect rhombs | _* | 2.71 | white | vitreous | colourless, white, tints | *effervesces with
0.5M HCl, rhombic shape | | Fluorite | *4 good, parallel to octahedron | * | 3.0-3.2 | white | vitreous | colourless
purple/green/yellow | fluoresces in uv light,
cubic or octahedral crystals | | Halite | 3 good, 90 cubic | *2.5 | 2.2 | white | vitreous | colourless, white, often stained | *salty taste cubic crystals, often stained | | Gypsum | 1 good (basal) | *1.5-2 | 2.3 | white | silky, pearly | colourless, white, often stained | fibrous or twinned crystals | | Barites | 2 good, 90 | *3-3.5 | *4.5 | white | vitreous, resinous | white, pink | bladed crystals | | Chalcopyrite | poor/conchoidal | 4 | 4.2 | *black | metallic | bronze yellow | *tarnished to peacock colours | | Pyrite | none/conchoidal | 9* | 5.0 | *greenish black | metallic | brass yellow | crystals often striated cubes | | Galena | *3 good, 90 cubic | *2.5 | *7.5 | *lead grey | metallic | lead grey | cubic crystals | | Haematite | poor/subconchoidal | *5.5-6.5 | 4.9-5.3 | *cherry red | metallic-dull | red/black skin/steel grey | kidney shaped masses,
fibrous | | * - Heaful property for diagonalis | for diagnosis | DE . | 7001 00 000 | Common rock forming mineral | | | | * - Useful property for diagnosis RF - Common rock-forming mineral This table should <u>not</u> be memorised. Marks in the outcomes of tests on minerals and, on some occasions, identification from test results.