GCE

Geology

Unit F791: Global Tectonics
Advanced Subsidiary GCE

Mark Scheme for June 2015

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

Annotation	Meaning
BP	Blank Page - this annotation must be used on all blank pages within an answer booklet (structured or unstructured) and on each page of an additional object where there is no candidate response
5	Unclear
BOD	Benefit of the doubt
N018	Contradiction
3	Incorrect response
ECF	Error carried forward
I	Ignore
R	Reject
NBOD	Benefit of the doubt not given
$\boldsymbol{\wedge}$	Information omitted
\wedge	Correct response
",	Point has been noted, but not credit has been given
- ! !	Poor diagram

Question			Answer/Indicative content	Mark	Guidance
1	(a)		ANY 2 points from: cloud of gas / dust spinning in space OR cloud of gas / dust hit by a shockwave; planets coalesced from dust cloud OR accretion from dust cloud OR cloud of dust collapsed OR formation of protoplanetary disc; gravitational force forms the planets OR dust particles drawn together by gravity OR electrostatic attraction pulls dust particles together; planetary material separated into layers OR planetary material separated into terrestrial planets and gas giants; asteroid belt may be material that failed to make a planet OR asteroid belt is debris from an exploded planet;	2	ALLOW 1 mark for a general comment using parts of 2 marking points ALLOW microplanets / planetesimals ALLOW correct alternative terms for dust eg. material / matter / rocks DO NOT ALLOW gas without any mention of solid matter ALLOW mantle and core ALLOW AW for all mark points
	(b)	(i)	Earth AND Mars AND Mercury AND Venus ;	1	All four correct planets need to be ticked for 1 mark DO NOT ALLOW if more than four ticks shown
		(ii)	$\begin{aligned} & \text { terrestrial planets = } 5.03 \text { OR } 5.0 \\ & \text { AND } \\ & \text { gas giants }=1.24 \text { OR } 1.2 ; \end{aligned}$	1	Both correct for 1 mark ALLOW ECF from (b)(i) ALLOW correct answers to more than 2 dp or whole number for terrestrial planets
	(c)		surface rocks / crust density is between 2.7 and $3.0 \mathrm{~g} / \mathrm{cm}^{3} \mathbf{O R}$ crust density is less than whole earth density; mantle and core must be greater than $5.5 \mathrm{~g} / \mathrm{cm}^{3}$ / earth average OR core must be greater than $5.5 \mathrm{~g} / \mathrm{cm}^{3}$ / earth average ;	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	ALLOW max 1 for general statements with no numeric data quoted
	(d)	(i)	ANY 1 point from: samples / specimens / physical materials collected from Moon (but not Mars) ; description from human astronaut on Moon (but not Mars) ;	1	

Question		Answer/Indicative content	Mark		
			(ii)	Scale Solcanoes are large scale OR Olympus Mons is a huge volcano OR approximately 27km high with a diameter of approximately 600km OR Mars volcanoes larger than any on Earth AND Type shield volcanoes OR Hawaiian type OR fissure type OR basaltic / mafic OR effusive OR non-viscous;	1

Question		Answer/Indicative content	Mark	Guidance	
$\mathbf{2}$	(a)	(i)	ANY 2 points for 1 mark from: intensity levels are observed OR residents enter effects they felt on USGS website OR people complete questionnaires ; intensity values are plotted (on a map); points of equal intensity are joined up OR separate areas of different intensity ;	1	
	(ii)	ANY 1 point from: depends on the underlying geology which may vary OR rocks may be different OR rock density may be different unconsolidated areas will have a higher than expected intensity ORA; liquefaction will increase the intensity ;	1	ALLOW low quality of building construction will cause greater damage ORA	
(b)	(i)	R anywhere within the VII intensity zone ;	(ii)	suitable isoseismal line drawn between V and VII AND moderate damage to buildings	Must have both line drawn and correct description for 1 mark

Question		Answer/Indicative content	Mark	Guidance
(c)		focus ; epicentre ; 0 (km) / 70 (km) ; 70 (km)/ 0 (km) ; surface; amplitude ;	5	$\begin{aligned} & 1 \text { or } 2 \text { correct = } 1 \text { mark } \\ & 3 \text { correct }=2 \text { marks } \\ & 4 \text { correct }=3 \text { marks } \\ & 5 \text { correct }=4 \text { marks } \\ & 6 \text { correct }=5 \text { marks } \end{aligned}$
(d)		ANY 1 point from: as the ground moves a heavy weight/mass dampens movement of pen AND plots / records the movement ; part of the seismometer will move (with the Earth) while the other part will not move AND plots / records the movement ; measures vibrations / movement in the ground AND plots / records the movement ;	1	ALLOW a diagram with two correct annotations ALLOW AW
(e)	(i)	Type of plate margin conservative ; Description ANY 1 point from: shear movement ; plates move horizontally past each other ; plates neither created or destroyed ; horizontal movement along the San Andreas Fault ; plates move past each other in same direction at different speeds; movement along a transform fault OR strike slip OR tear fault (on land) ;	1	conservative must be spelled correctly for mark ALLOW lateral movement as alternative to horizontal

Question		Answer/Indicative content	Mark	Guidance
(ii)	ANY 1 point from: the plates are not subducting OR there is no Benioff Zone; movement is along shallow faults OR movement is along transform / tear / strike-slip faults; movement only in crustal rocks ; lithosphere <70 km thick ;	1		
		Total	13	

Question			Answer/Indicative content	Mark	Guidance
3	(a)	(i)	the outcrops of the continental shields matches up between both the continents OR the rock types in both continents are the same / match up ; the shield areas are the same age in both continents $\mathbf{O R}$ the shield areas are both Precambrian / older than 700 Ma ;	1 1	ALLOW both marks if marking points have been put into one answer ALLOW max 1 for general statement of both outcrop and age OR rock type and age are the same without reference to continents ALLOW specific igneous or metamorphic rock DO NOT ALLOW just "they match up". It needs an explanation.

| Question | | Mark | |
| :--- | :--- | :--- | :--- | :--- |

Question		Answer/Indicative content	Mark	Guidance
(c)		Named example Cynognathus OR Glossopteris OR Mesosaurus ; ANY 1 point from: Explanation the same fossils match up across the join of the continents ; fossils are the same age on each continent ; they could not have swum / moved / spread across the ocean ;	1	ALLOW Lystrosaurus ALLOW other correct examples with correct explanation ALLOW general description e.g. land living plant, freshwater reptile or freshwater fish if no genus is given ALLOW AW
(d)	(i)	ANY 2 points for 1 mark from: rock with magnetic minerals / iron minerals / magnetite OR mafic rock OR measure the orientation / inclination / alignment / direction (of iron minerals) OR orientation / inclination / alignment / direction of palaeomagnetism ; indicates the (palaeo)latitude OR position of magnetic pole; determine the age of the rock; join up rocks with different ages to make curve ;	1	ALLOW any named mafic rock DO NOT ALLOW just iron / iron particles in rocks
	(ii)	when polar wandering curves are the same it indicates that the continents were joined OR curves are the same from 300 Ma to 100 Ma so continents were joined ; when the polar wandering curves diverge then continents have separated OR curves are different after 100 Ma so continents were separate ;	1	ALLOW max 1 for general statement about continents were joined and then separate

Question	Answer/Indicative content				Mark	Guidance
(e)		convergent plate margins			4	```1 correct row = 1 mark 2 correct rows = 2 marks 3 or 4 correct rows \(=3\) marks 5 or 6 correct rows \(=4\) marks \\ Granite batholiths - ALLOW a tick for oceanicoceanic```
	Feature	Oceanic oceanic	Oceanic continental	Continental continental		
	Benioff zone	\checkmark	\checkmark			
	island arc	\checkmark				
	granite batholiths	(\checkmark)	\checkmark	\checkmark		
	fold mountain chains		\checkmark	\checkmark		
	ocean trench	\checkmark	\checkmark			
	reverse faults	\checkmark	\checkmark	\checkmark		
				Total	15	

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{Question} \& Answer/Indicative content \& Mark \& Guidance \\
\hline 4 \& (a) \& (i) \& \begin{tabular}{l}
description ANY 1 point from: \\
large amount of stress needed for a small amount of strain; fractures after little strain; elastic limit is reached after small amount of strain; stress increases rapidly before fracture; \\
explanation ANY 1 point from: \\
sandstone is a competent rock which can withstand more stress OR sandstone is a competent rock which can store more energy ; \\
competent rock will fracture with less strain OR competent rock will fracture with little plasticity; \\
there is little plastic deformation before the rock ruptures / fails / fractures / reaches elastic limit;
\end{tabular} \& 1

1 \& ALLOW sandstone is competent and brittle OR sandstone is competent and fractures OR sandstone is competent and not ductile / plastic

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Question} \& Answer/Indicative content \& Mark \& Guidance \\
\hline \& (ii) \& \begin{tabular}{l}
ANY 2 points from: \\
small amount of stress causes a large amount of strain OR fractures after a lot of strain ; \\
shale has long period of plastic / ductile deformation before brittle failure; \\
shale is ductile / plastic AND incompetent OR shale behaves in an incompetent manner OR shale is incompetent so can form cleavage; \\
shale is unlikely to fault unless the strain is very high ; \\
the thickness of a bed of shale will often change becoming thinner on the limbs of a fold ; \\
folds can be very small scale and / or very tight;
\end{tabular} \& 2 \& ALLOW deformation as an alternative to strain ALLOW faulting or joint formation as an alternative to brittle failure \\
\hline (b) \& (i) \& \begin{tabular}{l}
ANY 1 point from: \\
tension at the fold hinge / crest / trough occurs so the rocks at the top of the fold will fracture ; \\
the outer layer of rock is stretched and breaks OR tensional forces on the outside of the fold hinge cause joints; tension joints form parallel to the axial plane trace ; cross joints form on the limbs of folds ;
\end{tabular} \& 1 \& \\
\hline \& (ii) \& clay minerals align at \(90^{\circ}\) to the compressive stress OR align parallel to the fold axial plane ; \& 1

1 \& | 1 mark for diagram AND two labels eg. random clay minerals, aligned clay minerals / muscovite, platy minerals, axial plane, compression / pressure, (pressure) arrows |
| :--- |
| ALLOW 2 marks for a well annotated diagram that includes explanation |
| 1 mark for explanation |

\hline
\end{tabular}

Question		Answer/Indicative content	Mark	Guidance
(c)	(i)	compression OR compressional OR compressive;	1	Spelling must be correct for mark
	(ii)	(1) symmetrical anticline correctly drawn AND two labels ; asymmetrical syncline correctly drawn AND two labels ;		see diagram max 1 for two correct diagrams but no correct labels max 1 for correct labels on both diagrams but diagrams incorrect max 1 for one correct diagram with any one set of correct labels DO NOT ACCEPT overfold for the syncline DO NOT ACCEPT symmetrical anticline diagram if dips of limbs differ by more than 5 degrees unless labelled as different Labels: youngest OR oldest rock / younging direction, axis / axial plane (vertical), axis / axial plane (inclined), hinge, limb, crest, trough, angle of dip, direction of maximum pressure, (tension) joints
(d)		nappe correctly drawn AND two labels from recumbent fold, axis / axial plane, thrust fault, low angled reverse fault, fault plane,	1	see diagram the correct sense of movement must be shown on the nappe diagram max 1 for two correct diagrams but no correct labels max 1 for correct labels on both diagrams but diagrams incorrect

\begin{tabular}{|c|c|c|c|}
\hline Quest \& Answer/Indicative content \& Mark \& Guidance \\
\hline \& \begin{tabular}{l}
inverted limb, limb half arrows on thrust fault, direction of maximum pressure ; \\
recumbent fold correctly drawn AND two labels from axis / axial plane, limbs close to horizontal \(/<30^{\circ}\), axial plane at (low angle), inverted limb, limb, younging direction, hinge, direction of maximum pressure ;
\end{tabular} \& 1 \& \begin{tabular}{l}
max 1 for one correct diagram with any one set of correct labels \\
ALLOW folds and faults above thrust plane
\end{tabular} \\
\hline (e) \& \begin{tabular}{l}
First feature \\
slickensides \\
ANY two from: \\
Descriptions of first feature \\
scratch marks OR grooves OR ridges OR striations ; \\
marks which feel smooth in the direction of movement and rough opposite ; \\
mineralisation on one fault surface showing grooves ; \\
polished OR parallel OR in the direction of movement; \\
Second feature \\
fault breccia \\
ANY two from: \\
Descriptions of second feature \\
angular fragments; \\
rotated fragments OR broken fragments OR brecciated fragments; \\
fragments of faulted rock OR fragments of wall rock OR fragments from either side of fault plane ; \\
within a clay matrix / clay gouge / rock flour; \\
mineralisation OR (mineral) cement ;
\end{tabular} \& 1
1
1

1
1

1 \& | 1 mark for the name of the feature |
| :--- |
| need 2 description points for 1 mark |
| 1 mark for the name of the feature ALLOW mylonite OR cataclasite |
| need 2 description points for 1 mark |
| ALLOW 1 max for one description mark from each feature |

\hline \& Total \& 16 \&

\hline
\end{tabular}

Question		Answer/Indicative content	Mark	Guidance
5		Deep mines and boreholes		
		- boreholes / mines allow samples / cores to be brought up from the crust - samples obtained by drilling boreholes - boreholes / mines can give information (eg. geothermal gradient, geophysical characteristics, geochemistry / composition) about the crust OR boreholes can give information about the lithosphere deep mines $4-6 \mathrm{~km}$ deep OR boreholes $8-13 \mathrm{~km}$ deep samples are used to inform about rocks that may not be found at the surface OR any named sedimentary, igneous or metamorphic rocks brought to the surface	$\begin{aligned} & \max \\ & 3 \end{aligned}$	If no examples of rock types then $\max 7$
		Volcanic activity		
		- magma feeding the volcanoes may come from the crust OR upper mantle OR magma rising up vents may come from the upper mantle - magma may be brought up by explosive volcanic activity - analysis of basalts allow estimate of mantle composition - xenoliths / fragments broken from the sides of the vent OR xenoliths within basalt OR xenoliths within kimberlite OR xenoliths from the upper mantle - material in kimberlite pipes may include diamonds formed at depth (250km) / upper mantle / high pressure - basalt / andesite / rhyolite from the crust OR basalt from the upper mantle OR mantle rocks are most commonly peridotite OR other ultramafic rocks OR mantle rocks brought to the surface may contain the mineral olivine	$\begin{aligned} & \max \\ & 3 \end{aligned}$	
		Ophiolites		
		- ocean crust has been broken off at a convergent plate margin / subduction zone - ophiolite has been thrust / obducted onto continental crust - the ophiolite shows the sequence / section of oceanic crust rocks - deformation and erosion has exposed the ophiolites at the surface - sequence is deep sea ooze / limestone / chert, basalt, dolerite, gabbro, peridotite	$\begin{aligned} & \max \\ & 3 \end{aligned}$	ALLOW uplifted ALLOW any three in correct order Sequence could be shown on a diagram
		Total	8	

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU

OCR Customer Contact Centre

Education and Learning

Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee

OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

