

GCE

Geology

Unit F795: Evolution of Life, Earth and Climate

Advanced GCE

Mark Scheme for June 2014

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2014

These are the annotations, (including abbreviations), including those used in scoris, which are used when marking

Annotation	Meaning
BP	Blank Page – this annotation must be used on all blank pages within an answer booklet (structured or unstructured) and on each page of an additional object where there is no candidate response.
?	Unclear
BOD	Benefit of doubt given
CON	Contradiction
×	Incorrect response
ECF	Error carried forward
I	Ignore
R	Reject
NBOD	Benefit of doubt not given
	Omission mark
~	Correct response
SEEN	Point has been noted, but no credit has been given
PD	Poor diagram
MB	Maximum Response

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

F795

C	Question		Answer	Mark	Guidance
1	(a)	(i)	 A Mollusca OR mollusc AND Gastropoda OR gastropod; B Echinodermata OR echinoderm AND echinoid OR irregular (echinoid) OR echinoidea; C Mollusca OR mollusc AND cenhalopod OR belempite OR belempid 	1	ALLOW correctly identified genera for group
			 OR coleoid; D radiolarian OR radiolaria; 	1	
	(a)	(ii)	 spire; body chamber OR opening OR aperture; petaloid ambulacra OR ambulacra OR ambulacral plate; phragmocone OR chamber; 	3	4 correct = 3 mark 3 correct = 2 marks 2 or 1 correct = 1 mark DO NOT ALLOW body chamber for belemnite
	(a)	(iii)	fossil A is benthonic OR epifaunal AND fossil C is nektonic; fossil A is slow moving OR is vagrant OR has a foot OR moves on sea floor OR lives on the sea floor AND fossil C has quick movement OR swims in the water column OR swims by jet propulsion OR swims using tentacles; fossil A may be a predator (boring into shells) OR A may be a detritus feeder OR A feeds on algae AND fossil C actively hunts using tentacles OR is a predator;	2	ANY 2 paired statements MUST compare A and C for 1 mark DO NOT ALLOW predator unqualified for both A and C
	(a)	(iv)	D floats in the (upper surfaces) water column OR D is fully marine OR D floats in open water OR D can live in different environments OR D is preserved below the CCD OR silica tests are more stable (than calcite);	1	ORA

C	Questi	ion	Answer	Mark	Guidance
1	(b)	(i)	cephalon, pygidium, thorax bracketed OR shaded on trilobite F OR E ;	1	3 labels correct = 2 marks 2 labels correct = 1 mark
				1	1 correct = 0 marks
					DO NOT ALLOW labels to a single point
	(b)	(ii)	one thoracic segment correctly shaded OR labelled	1	ALLOW use of pleuron or pleura for thoracic segment
	(b)	(iii)	11 pairs of legs	1	
	(c)	(i)	enrollment (into a ball to protect soft underbody) OR many thoracic segments allow them to roll up OR separated / articulating plates that allow them to enrol OR spines on pleura deter predators OR genal spines deter predators	1	
		(ii)	fossil F has more crescentic OR semi-circular eyes OR curved eyes OR convex eyes	1	MUST have morphological feature and reason for 1 mark
			AND		
			F has greater all round vision OR has a wider field of view OR has nearly 360° vision OR could spot predators more easily OR could spot prey more easily		
		(iii)	spines are longer on fossil E (than on fossil F); spines are larger on fossil E (than on fossil F); spines are thinner on fossil E (than on fossil F); fossil E has two /more pygidial spines (whilst fossil F has one);	1	ORA ANY 1
			Total	17	

F795

C	Question			Answer								Ма	rk	Guidance
2	(a)	(i)		Bedding pla	ane 1				Bedding p	lane 2		2		bedding plane 1: tally correct for 1 mark
			Orientation		Tallied no speci	umber of mens		Orier	ntation	Tallied numbe specimens	er of s			bedding plane 2: tally correct for 1
			000 – 030 °	181 – 210°	1111	4		000 – 030 °	181 – 210°					mark
			031 – 060 °	211 – 240 °	1	1		031 – 060 °	211 – 240°	11111 1111	9			ALLOW where 2 columns of
			061 - 090°	241 – 270 °	11	2		061 - 090°	241 – 270°	11	2			numbers have been completed
			091 – 120 °	271 – 300 °	11	2		091 – 120 °	271 – 300 °					
			121 – 150 °	301 – 330 °	11	2		121 – 150°	301 – 330 °					
			151 - 180°	331 - 360°	1	1		151 - 180°	331 - 360°	1	1			
	(a)	(ii)	Rose diag Rose diag Beddi	ram 1 plotte ram 2 plotte		tly; tly; Bedding	p plan	he 2				1		 ALLOW plots as either whole plots or up to 180° ALLOW different scale for each diagram. Scale does not have to be shown ECF from part (i)

(Question		Answer	Mark	Guidance
	(a)	(iii)	bedding plane 1 has random orientation OR alignment of between 0° and 30° (to 180° and 210°) / N to S AND bedding plane 2 shows an alignment of between 30° and 60° (to 210° and 240°) / NE to SW; bedding plane 1 lacks a current on the bottom OR bedding plane 1 had weak current OR they are not aligned on bedding plane 1 due to lack of current OR bedding plane 1 formed in low energy; bedding plane 2 has alignment in the direction of a current OR bedding plane 2 had strong current OR bedding plane 2 was aligned at right angles to current direction OR bedding plane 2 was aligned parallel to current direction OR bedding plane 2 has formed in high energy;	1	 ALLOW non-numerical descriptors for compass directions ALLOW max 1 for a general description for alignment with the current in both bedding planes
2	(b)	(i)	long neck to allow it to graze on vegetation OR to reach vegetation in tree tops; peg like teeth for biting vegetation OR peg like teeth to strip vegetation OR peg like teeth not suitable for tearing flesh OR teeth found only at the front of the jaw for biting vegetation OR teeth found only at the front of the jaw to strip vegetation; gastroliths present in stomach for aiding digestion OR gastroliths present in stomach for grinding food OR collection of stones present in stomach for aiding digestion; tail long and whip like used for defence; large / heavy / quadruped would be slow moving so not a predator;	2	ANY 2 ALLOW rounded teeth instead of peg like DO NOT ALLOW grinding or chewing
	(b)	(ii)	large / sharp / serrated teeth for tearing flesh / eating meat OR bone crushing teeth to attack prey OR bone crushing jaw strong enough to attack prey; bipedal / large back or rear legs (be fast moving) to chase prey; small eyes / front facing eyes as did not need to see other predators OR forward facing eyes for good binocular vision (to judge distance); sharp claws useful for tearing flesh OR sharp claws useful for securing prey olfactory lobe present to give sense of smell / enable scavenging	2	ANY 2
			Total	11	

C	Question		Answer	Mark	Guidance
3	(a)	(i)	 columella labelled on fossil H in centre of coral; individual corallite identified on either fossil G or H; dissepiments identified on transverse (cross) section of fossil H only, in between septa; tabulae labelled on either fossil G or H, as near horizontal plates on longitudinal section; 	3	4 correct for 3 marks 3 correct for 2 marks 1 or 2 correct for 1 mark
	(a)	(ii)	G – tabulate OR tabulata	1	
	(a)	(iii)	give support / rigidity / strength to the coral skeleton / calice / corallum / polyp septa increase surface area of gut to aid digestion;	1	ANY 1 DO NOT ALLOW reference to horizontal support or support of coral or division of chambers DO NOT ALLOW for support or strength only, unless it is qualified
	(a)	(iv)	 they are symbiotic / live with photosynthetic algae OR they are symbiotic / live with zooxanthellae; algae provide oxygen for the corals (for respiration); corals provide carbon dioxide for algae (for photosynthesis); algae get nutrition / food / nitrates / phosphates from coral waste products; algae get protection from the coral as they live within the soft tissue; 	1	ANY 1 of the bullet points
	(b)	(i)	J – bioclastic limestone OR fossiliferous limestone OR reef limestone OR biosparite K – bioclastic limestone OR crinoidal limestone OR biosparite	1	MAX 1 if biosparite given as answer for both J and K MAX 1 if bioclastic limestone given
	(b)	(ii)	brachiopod AND / OR bivalve shells	1	

Question		ion	Answer	Mark	Guidance
	(b)	(iii)	recognisable drawing of a crinoid AND identified as crinoid	1	1 or 2 correct labels =1 mark 3 correct labels = 2 marks
			any labels from the following list: calyx, brachia, stem, ossicles, five-fold symmetry	2	ALLOW roots / holdfast, basals, infrabasal, anal tube, tegument, calcite plate
3	(b)	(iv)	rock J labelled anywhere on the reef or carbonate ramp;	1	reason MUST match location chosen
			AND		
			if reef labelled - the fossils in the rock are reef building and reef dwelling OR high energy OR form a life assemblage in a coral reef OR where corals lived due to shallow water;		
			if carbonate ramp labelled – the fossil have been transported by currents OR area of high energy which has broken up coral;		
	(b)	(v)	high energy environment for well oxygenated water OR for nutrients;	3	ANY 4 for 3 marks
			shallow water most within 30 m of surface OR within the photic zone;		ANY 3 for 2 marks ANY 2 or 1 for 1 mark
			clear water due to lack of (clastic) sediment OR clear water for light penetration OR sediment in water clogs polyps:		MAX 1 if list given as: warm clear
			normal salinity OR 30 to 40 parts per thousand salt;		shallow sea
			temperatures between 23 to 29°C OR optimum is stated between 23°C and 29°C;		
			Total	17	

(Quest	tion	Answer	Mark	Guidance
4	(a)		varve; lithostratigraphy; diachronous; chronostratigraphy; assemblage	4	5 correct = 4 marks 4 correct = 3 marks 3 correct = 2 marks 1 or 2 correct = 1 mark
	(b)	(i)	labelled diagram showing included fragments in younger rock derived from older rocks eg older clasts in a conglomerate OR xenoliths of older country rock in a granite or other intrusion OR basal bed above an unconformity containing fragments of the older rocks below the unconformity;	1	MUST label younger / older rocks OR formed first / last MARK labels as text
			explanation: included fragments are older than the rock they are in OR fragments come from rocks laid down before the rock they are included in;	1	ALLOW a diagram that is numbered with an explanation within the answer indicating the oldest / youngest number
	(b)	(ii)	labelled diagram showing rocks with cross-cutting relationship, e.g. dyke cutting across sedimentary rocks OR younger rocks on top of unconformity cutting across older rocks OR two faults cross cutting each other with the older one displaced; explanation: older rocks are cross-cut by younger ones;	1	 MUST label younger / older rocks OR formed first / last MARK labels as text ALLOW a diagram that is numbered with an explanation within the answer indicating the oldest / youngest number
	(c)		energy level; infill with sediment OR sediment size; rate of sedimentation; burial; bioturbation; diagenesis	1	ANY 2

C	Quest	ion	Answer	Mark	Guidance
	(d)	(i)	silicification: replacement of wood by silica / SiO ₂ precipitated from groundwater OR if fossil dissolved away then silica / SiO ₂ precipitated from groundwater in voids OR addition of silica / SiO ₂ by petrification increasing density replacement: (atom by atom) of wood by a named mineral (haematite) precipitated from groundwater; carbonisation / coalification: volatiles are removed by compaction and carbon content increases OR preserved as a film / residue with imprint of wood / lignite / coal;	2	 ANY 2 1 mark max for 2 methods stated and not described ALLOW any correctly named iron / uranium mineral for replacement ALLOW thin branches / bark trapped in amber
	(d)	(ii)	requires low energy conditions; bacteria uses sulfur to respire OR bacteria break down organism; sulfur is reduced to bisulfide; (bisulfide) reacts with iron in the environment forming pyrites	2	ANY 2
4	(d)	(iii)	Diagrams showing before diagenesis - shell trapped in sediment AND after diagenesis with internal and external moulds labelled (dead) organism becoming trapped in sediment / burial in fine sediment OR decay of organism's soft parts; inside of shell infilled by sediment OR inside of shell infilled by precipitated minerals; groundwater dissolves original material / dissolution; impression of the outside of the shell is the external mould (can be seen on breakage); impression of the inside of the shell is the internal mould (can be seen on breakage).	1	Mark description on diagrams as text ANY 1 ANY 1
			Total	16	

Q	Question		Answer	Mark	Guidance
5	(a)	(i)	event marked at 7m above base	1	
	(a)	(ii)	 describe ¹³C is low when sea level is low (below 7m) OR ¹³C rises when sea level rises (above 7m); ¹³C rises when brachiopod numbers rise; number of brachiopods change just prior to the change in sea level OR number of brachiopods increase as sea level rises; 	2	ANY 2 for description ORA
			explain increase in sea level may reflect an increase in temperature (warmer climate) OR increase in ¹³ C may reflect an increase in temperature (warmer climate); higher sea level may reflect temperature increase which will give higher growth rates of plants;	2	ANY 2 for explanation ORA DO NOT ALLOW any connection
			temperature increase may result in algal blooms (which reduce oxygen) hence brachiopod numbers; availability of continental shelf / shallow sea / habitat / ecological niche will change brachiopod numbers as a result of sea level change; carbon isotopes increase sharply at 7 to 8m showing changing uptake of carbon in		with widespread glaciation events
			 plants (suggesting a change in environment); ¹²C taken up preferentially by plants OR increases in ¹³C mean more ¹²C locked up in plants; increases in ¹³C mean more plant growth on land; 		
	(b)	(i)	crust sinks locally when depressed by extra mass (e.g. ice or extra sediment); crust rises when extra mass is removed (ice melts or sediment removed) OR crust rebounds back up again; Scotland is rising due to ice melting AND southern England is sinking; raised beaches due to land rising AND submerged forests due to land sinking;	2	ANY 2 MAX 1 for crust sinks so sea level appears to rise AND crust rises so sea level appears to fall

Quest	ion	Answer	Mark	Guidance
(b)	(ii)	melting ice caps release water into the ocean OR increase in ice caps traps water; sea level rises when ice melts OR sea level falls when ice forms; OR	2	MAX 1 if two reasons given with no explanation
		increase in sizes of oceanic ridges (MOR) due to increased vulcanicity OR increase in spreading rate (at MOR);		ORA
		sea level rises when MOR is active / expands		ALLOW sea levels rise with thermal expansion of water due to
		changes in the size of the ocean basins;		climate change for 1 mark
		Increased sedimentation from erosion of land;		
(c)		shallow shelf dwellers may be affected more due to increased competition for space;	3	ANY 3
		sessile benthonic forms (eg crinoids, bivalves, brachiopods) may be affected most as they cannot easily move if changes are rapid;		Each point must have a clear explanation
		vagrant / non sessile benthonic forms (eg echinoids, gastropods) can physically move to keep pace with changing environment;		MAX 1 if no suitable examples are given
		vagrant / non sessile benthonic forms (eg echinoids, gastropods) may move into already inhabited areas, increasing competition;		
		nektonic or planktonic forms (eg graptolites, ammonites) not affected as much as they stay at constant level in the water column		
		reef building corals are affected due to the symbiotic relationship with the zooxanthellae (algae) which need to photosynthesise OR corals may not be able to grow upwards at the same rate the sea level rises ORA		
		Total	12	

Question		ion	Ans	wer		Mark	Guidance
6	(a)	(i)					
			Description	Term		3	5 or 6 correct for 3 marks
			consists of the Tertiary and	Cenozoic			3 or 4 correct for 2 marks
			Quaternary				1 of 2 correct for 1 mark
			the time before hard bodied fossils existed	Precambrian			
			geological system when ferns and fast growing plants were abundant	Carboniferous			
			geological system dominated by chalk deposition	Cretaceous			
			oldest geological system in the Palaeozoic era	Cambrian			
			era when dinosaurs existed	Mesozoic			
	(a)	(ii)	divided into systems based on fossil evide	nce;		1	ANY 1
			divided into systems based on lithological	evidence;			
			major changes in life on Earth mark major boundaries;				
			extinction of fossils mark major boundaries;				
			boundaries between systems are set at major events / unconformities / mountain				
			building events;				
			systems are not all the same length as ba	sed on fossils / events;			
			boundaries were decided by individual geo	ologists;			
			modern radiometric dating has helped def	ine the boundaries			
	(a)	(iii)	1700m = 1700 x 100 = 170000cm OR 170	0000mm			ALLOW if additional decimal
			80Ma = 80 000 000 years				places are given
			170 0000/80 000 000 = <u>0.021mm</u> OR <u>0.02</u>	2mm per year		1	

Question		on	Answer	Mark	Guidance
6	6 (b)		Kelvin's method: Kelvin assumed the Earth started as a molten body of rock; he assumed the Earth had cooled gradually over time (as in a cooling curve) OR used the rate of cooling to give the age of the Earth as 20 – 40 million years; he assumed that as cooling proceeded, the drop in temperature slowed; he measured the geothermal gradient in mines; he measured conductivity of rock samples in a laboratory	1	ANY 1
			why his method was incorrect: he did not take into account that the rocks had been metamorphosed; he did not about radioactivity OR radioactive decay adding heat; he did not know the correct mass of the core; he did not know the thermal conductivity of all rocks; he did not have the technology to measure heat flow accurately; he scaled up small-scale measurements to represent the whole Earth	1	ANY 1
			Total	7	

Question		Answer	Mark	Guidance
7		bivalves bilaterally symmetrical along the hinge line brachiopods bilaterally symmetrical about a plane from the umbo to the shell margin;	1	answers must be in pairs to gain credit when discussing differences mark diagrams as text
		bivalve individual valves are asymmetrical brachiopods individual valves are symmetrical;	1	
		bivalve has valves the same size brachiopod has different sized valves;	1	Where marking points overlap,
		bivalve have calcareous shells that are partly organic brachiopods have calcareous shells (unless they are inarticulate – chitin);	1	
		bivalve shells can grow very large (e.g. clams over 1m in size) brachiopods smaller (generally are less than 10cm);	1	
		bivalve maybe attached to the substrate with cement or using a byssus brachiopods maybe attached to the substrate by a pedicle stalk;	1	
		bivalves have gills / siphons brachiopods have a lophophore;	1	
		bivalves have many / large teeth and sockets OR cardinal teeth and sockets at the hinge brachiopods have two teeth and one socket OR few / small teeth and socket at the hinge;	1	
		bivalves have adductor muscles only OR adductor muscle scars brachiopods have adductor and diductor muscles OR adductor and diductor muscle scars;	1	
		bivalves usually have an asymmetrical umbo brachiopods usually have a symmetrical umbo;	1	
		bivalves have a (muscular) foot brachiopods do not have a foot;	1	
		(burrowing) bivalves have a gape brachiopods do not have a gape;	1	
		bivalves have a pallial line OR pallial sinus	1	

Question	Answer	Mark	Guidance
	brachiopods do not have a a pallial line OR pallial sinus;		
	bivalves have a ligament brachiopods do not have a ligament;	1	
	bivalves do not have a pedicle foramen / deltidial plates brachiopods have a pedicle foramen / deltidial plates;	1	
	bivalves do not have diductor muscles brachiopods have diductor muscles;	1	
	bivalves do not have a brachidium OR brachial support (for the lophophore) brachiopods have a brachidium OR brachial support (for the lophophore)	1	
	bivalves do not have a a fold and sulcus / zig zag commissure brachiopods may have a fold and sulcus / zig zag commissure;	1	
	<u>bivalves only</u> bivalves have a (muscular) foot OR (burrowing) bivalves have a gape OR bivalves have a pallial line OR pallial sinus OR bivalves have a ligament;	1	MAX 1 for unpaired answers for both bivalves <u>and</u> brachiopods
	<u>brachiopods only</u> brachiopods have a pedicle foramen OR deltidial plates OR brachiopods have a diductor muscles OR brachiopods have a brachidium OR brachial support (for the lophophore) OR brachiopods may have a fold and sulcus OR brachiopods may have a zig zag commisure	1	
	Total	10	

Question		۱	Answer	Mark	Guidance
8			Advantages- microfossils		
			very small so found in large numbers in sedimentary rocks;	1	For maximum marks, answers much have a minimum of
			planktonic so can be found in most sedimentary rocks OR planktonic so can be extracted from most sedimentary rocks OR planktonic so can be found in lots of different facies;	1	1 mark for advantages of graptolites
			small so usually well preserved OR small so usually found whole OR small enough to be found whole in drill cores;	1	1 mark for disadvantages of graptolites
			evolved very quickly so resolution of zones very fine OR rock units split into fine divisions;	1	microfossils
			easily identifiable as many different species / genera / forms existed;	1	1 mark for disadvantages of
			some microfossils (radiolaria) skeletons can survive below the CCD;	1	MICTOTOSSIIS
				•	No more than 4 marks can be
			Disadvantages - microfossils	1	obtained for any one section
			extraction may be difficult as they easily bleak,	1	
			time consuming as processing rock for extraction is slow;	1	Where marking points overlap, only credit once
			may need access to high level laboratory for processing samples;	1	
			different processing methods destroy some fossils;	1	
			some may be hard to identify OR some need specialist microscopes to see fossils;	1	
			hard to know which ones are zone fossils OR have to look at many specimens to find zone fossils OR requires more expertise to identify specimens;	1	
			calcite skeletons may be dissolved below CCD;	1	
			diagenesis / metamorphism destroys skeletons;	1	

Question		Answer	Mark	Guidance
		Advantages- graptolites large enough to see with the naked eye;	1	
		found in large numbers so abundant in (some) sedimentary rocks;	1	
		geographically widespread as they were planktonic;	1	
		evolved relatively quickly so resolution of zones is good OR used to zone Ordovician and Silurian;	1	
		easily identifiable as changes such as stipe number OR stipe attitude OR thecal shape are clear;	1	
		composed of scleroprotein so easily preserved OR can be preserved in 3D by pyritisation OR survives below CCD as made of scleroprotein;	1	
		Disadvantages - graptolites some may be hard to identify, due to poor preservation eg thin carbon film / carbonisation;	1	
		alteration to clay minerals during diagenesis;	1	
		only found in fine grained sediments so restricted;	1	
		too fragile to survive in shallow sea / high energy rocks;	1	
		may not be found in the rocks you want to zone;	1	
		Advantages- both graptolites and microfossils found in lots of different rock types OR widely distributed due to being planktonic;	1	
		live in surface waters and fall to sea bed on death OR live in water column and fall to sea bed on death;	1	
		Disadvantages- both graptolites and microfossils		
		diagenesis OR the weight of overlying rock OR low grade heating destroys fossils;	1	
		both are fragile so will not be found in shallow sea / high energy rocks / coarse clastic	1	
		Total	10	

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627 Email: <u>general.gualifications@ocr.org.uk</u>

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

© OCR 2014

