RECOGNISING ACHIEVEMENT
GCE

Geology

Advanced GCE
Unit F795: Evolution of Life, Earth and Climate

Mark Scheme for June 2013

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

1. Annotations available in Scoris

Annotation	Meaning
5	Unclear
BOD	Benefit of doubt given
CON	Contradiction
*	Incorrect response
ECF	Error carried forward
I	Ignore
NBOD	Benefit of doubt not given
PD	Poor diagram
R	Reject
SEEN	Noted, but no credit given
\wedge	Correct response
\wedge	Omission mark
MR	Maximum (marks available for) Response

2. Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
ECF	Underlined words must be present in answer to score a mark
AW	Alternative wording
ORA	Or reverse argument

Question			Answer	Marks	Guidance
1	(a)	(i)	A phylum = Arthropoda OR arthropod group $=$ Trilobita OR trilobite B phylum = Mollusca OR mollusc group = bivalve C phylum = Mollusca OR mollusc group = cephalopod OR ammonoid OR ammonite OR ceratite OR goniatite	3	both phylum and group correct for one mark
		(i)	```1 = eye 2 = genal spine 3 = last chamber/body chamber/aperture 4 = protoconch```	3	4 correct for 3 marks 3 correct for 2 marks 1 or 2 correct for 1 mark
		(iii)	fossil A feature: eyes on stalks reason: to allow forwards, sideways and backwards vision OR to aid seeing OR catching prey OR 360° vision feature: large glabella OR inflated glabella OR fat filled glabella reason: to aid floatation/swimming OR for buoyancy feature: very small size reason: small to stay afloat OR for swimming in the water column feature: separated spines OR separated pleura OR large genal spines reason: increase surface area for floatation/swimming OR to stay afloat in the water column feature: good number of pleura OR 10 pleura reason: showing it had many legs (20) for floatation/swimming OR steering	1	the identified morphological feature and reason must be in pairs for 1 mark DO NOT ALLOW soft parts or discussion of appendages

Question	Answer	Marks	Guidance
	fossil B feature: ribbed shells OR corrugated shells reason: provides strength without mass/weight OR allows it to withstand currents feature: has ears extending to the hinge line reason: to direct the water currents OR improve stability feature: large adductor muscle scar reason: for flapping valves OR swimming feature: flat valve shape OR thin valves (shells) reason: to make swimming easier fossil C feature: coiled with hydrodynamic shape OR rounded/streamlined shaped reason: for ease of movement through the water feature: centre of buoyancy low reason: to remain upright in the water column feature: chambered shell OR gas and fluids present OR siphuncle present reason: to allow control of gases and buoyancy OR to allow it to move vertically feature: ribs/ornamentation OR complex suture reason: to strengthen shell OR allowing movement to greater depth	1	the identified morphological feature and reason must be in pairs for 1 mark DO NOT ALLOW soft parts the identified morphological feature and reason must be in pairs for 1 mark DO NOT ALLOW gas in body chamber
(iv)	C found in open waters so falls out of the water column on death into different sediment types; surface waters where \mathbf{C} lived did not reflect the sediments at depth; C lived in a variety of different environments.	1	any one
(v)	calcite OR aragonite $\mathbf{O R}$ calcium carbonate $\mathbf{O R ~ C a C O} 3$	1	

Question		Answer	Marks	Guidance		
(vi)	$\begin{array}{l}\text { fossil shell could be replaced by the process of pyritisation OR } \\ \text { fossil shell could be replaced by the process of silicification OR } \\ \text { fossil composition changed by the process of carbonisation OR } \\ \text { original material replaced by other correct named mineral OR } \\ \text { original material replaced by another new mineral }\end{array}$	1	DO NOT ALLOW aragonite to calcite			
(b)	(i)	$\begin{array}{l}\text { recognisable labelled diagram of a graptolite } \\ \text { Didymograptus/Tetragraptus/Diplograptus drawn } \\ \text { any three labels from sicula, theca, stipe, nema and aperture } \\ \text { rhabdosome indicated for whole skeleton }\end{array}$	$\begin{array}{l}\text { 2 }\end{array}$	$\begin{array}{l}\text { ALLOW pendent, horizontal, reclined or } \\ \text { a minimum of one stipe }\end{array}$		
scandent if correctly applied to diagram drawn						
recognisable separate theca all the way along					$]$	1 or 2 labels for 1 mark
:---						
3 labels for 2 marks						

Question		Answer	Marks	Guidance	
	(ii)	using a muscular foot; bivalve extends foot into the sediment and inflates the end; muscle contracts moving the shell down; the bivalve pulls itself down through the sediment; smooth/streamlined shell to allow movement through the sediment OR streamlined shell with growth lines to allow easier movement through sediment.	2	any two points	
(d)	(iii)gives a large surface area to open shells to allow water in OR helps exclude sediment from entering OR stops lophophore being damaged by sediment OR stops valves from twisting OR locks the shells together	1	DO NOT ALLOW foot on its own, must use a descriptive term		
brachiopods use a pedicle AND bivalves use a byssus OR brachiopods are pedically attached AND bivalves are bysally attached the pedicle is a fleshy stalk OR muscular stalk; that protrudes from the pedicle valve/pedicle foramen; this aligns the brachiopod to best collect particles in the current so good for feeding; lacks strength in strong storms. the byssus is a collection of horny threads OR threads of protein OR thread like organic material; it is flexible allowing movement of bivalves in the current; cannot control the position in the current (not a muscle) so worse for feeding; very strong during a storm.	1	must have explanations for both the brachiopod and bivalve for three marks	1	1	

Question			Answer	Marks	Guidance
3	(a)	(i)	Cnidarian OR Cnidaria	1	
		(ii)	scleractinian	1	
		(iii)	septum OR septa provide strength/support to the structure/corallite	1	must identify feature with a reason for one mark ALLOW to increase surface area of the gut to aid digestion
	(b)	(i)	environmental condition: shallow depth OR clear water OR in the photic zone reason: so that light penetrates the water for photosynthesis by algae OR description of coral symbiotic relationship with zooxanthellae OR so photosynthesis can take place (in algae) environmental condition: water free from particles/sediment OR away from river sources reason: so that the polyps are not clogged environmental condition: high energy action reason: to incorporate oxygen into the water for respiration environmental condition: high energy action reason: allows upwelling of nutrients environmental condition: fully marine conditions OR salinity 30-40 parts per thousand reason: as corals cannot tolerate a range of salinities environmental condition: sea temperature given between 23 and $29^{\circ} \mathrm{C}$ reason: maximise growth OR more carbonate in solution	3	any three environmental conditions linked to reasons. If a list is simply stated, then a maximum of 1 mark for 3 conditions
		(ii)	assumptions that ancient and modern corals have similar morphologies OR using the law of Uniformitarianism OR the present is the key to the past OR scleractinian corals have lived throughout the Mesozoic to Present with little change	1	

Question		Answer	Marks	Guidance
(c)	(i)	hot spot activity creates volcanoes and shallow seas colonised by corals OR volcano forms an island with shallow seas colonised by corals; hot spot moves away and crust begins to sink OR the volcano sinks beneath the sea; coral growth keeps pace with sinking forming reef and coral grows up to form an atoll; alternative answer volcanic island colonised by coral to form a fringing reef; volcano sinks (isostatically) (coral grow up at equal rate) to form a barrier reef; volcanic island completely sinks below sea level (coral grows up) to form an atoll;	3	one diagram for each stage 1 mark for each of the 3 stages one mark for diagrams and text showing the general processes max 2 marks if no reference to coral growth
	(ii)	Maldives/New Caledonia/outer islands of the Seychelles/Coral Sea islands/Marshall Islands/Solomon Islands/North-Western Hawaiian Islands/Indian Ocean/Pacific Ocean/Caribbean	1	
(d)	(i)	high energy AND shallow sea environment; high number of thick-shelled fauna to withstand strong currents OR few thin smooth shells as they cannot stand the strong currents; a low number of whole fossils suggesting high fragmentation due to strong currents; no graptolites and few nautiloids as they cannot survive in strong currents OR corals require high energy.	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	ALLOW littoral as an alternative to high energy and shallow sea any two reasons 1 mark for 2 points of correct general evidence but no mention of strong currents ALLOW high energy as an alternative to strong currents in the explanation

Question		Answer	Marks	Guidance
(ii)	lithological evidence coarse grain size; well rounded grains; high maturity OR all quartz; named rock of conglomerate/sandstone/oolite/bioclastic limestone; cross bedding/ripple marks; explanation coarse grains deposited, whilst finer grains remain in suspension OR coarse grains deposited, whilst finer grains transported away; well rounded grains due to a large number of high energy collisions/attrition; quartz is more able to resist changes in the environment (high energy) due to hardness/low chemical reactivity/lack of cleavage; (high energy) description of environment such as shallow (carbonate) seas/shallow clastic seas/reefs/beaches; description of ooliths formed by tidal action OR description of bioclastic limestone formed from reef debris on side of reef; sedimentary structures indicate (fast flowing) currents; mark			

Question			Answer	Marks	Guidance
4	(a)	(i)	has a test composed of calcite plates regular irregular both has only one plane of symmetry regular irregular both has spines for defence regular irregular both has a fasciole regular irregular both has ambulacra and interambulacra regular irregular both has tube feet regular irregular both	3	5 correct for 3 marks 4 or 3 correct for 2 marks 2 or 1 one correct for 1 mark
		(ii)	plastron description: area of tubercles/spines on base OR area between mouth and anus of tubercles/spines OR area of tubercles where small spines are attached explanation: attachment area for spines OR spines used to dig burrows OR spines for movement pore pairs description: (two) holes on the ambulacral (plate) OR holes in the test explanation: used for tube feet to protrude	1 1 1 1	
		(iii)	regular - vagrant OR epifaunal irregular - infaunal OR burrowing	1	requires both to be correct for one mark
	(b)	(i)	brachia - any of the arms on the top of the diagram calyx - cup between brachia and stem stem - between the holdfast and calyx	2	three correct for 2 marks two or one correct for 1 mark
		(ii)	one segment in the stem shaded and labelled	1	ALLOW segments in the brachia

Question		Answer	Marks	Guidance	
		(iii)	fivefold symmetry; composed of plates of calcite OR description of calcite skeleton; water vascular system.	1	DO NOT ALLOW calcite only
	(c)	(i)	fossils with narrow stratigraphic ranges found in different areas can be assumed to be the same age OR same evolutionary stages assumed to be the same age OR biostratigraphic correlation using zone fossils to match areas OR biozones used as correlation between areas OR Oss may have lived in a high energy environment assemblages of particular fossils represent a particular age	1	1
	(ii)	same (relative) thicknesses of varves can be matched OR sequences can be matched OR patterns of bands can be matched	1		
			15	Total	15

Question			Answer	Marks	Guidance
5	(a)	(i)	Carboniferous aeolian sandstones deposited in hot deserts. palaeocurrent direction indicates a north easterly wind Cretaceous clays and limestones which contain some corals are deposited in sub- tropical seas in the south and east of the British Isles Jurassic limestones formed in tropical seas, followed by coals formed in deltas associated with foresets fossil plants indicate a warm and humid climate; ammonites common, but die out at the end of this period ,	3	4 correct for 3 marks 3 correct for 2 marks 2 or 1 correct for 1 mark
		(ii)	coal forms in equatorial areas as it needs hot and wet conditions for rapid growth of vegetation; red/desert sandstones/evaporites form in desert latitudes/dry tropical environments which are about $20^{\circ} \mathrm{N}$ and $20^{\circ} \mathrm{S}$ as there are arid areas as a result of the dry winds; limestones which contain corals form in subtropical latitudes about $30^{\circ} \mathrm{N}$ and $30^{\circ} \mathrm{S}$ as corals require warm waters of about $25^{\circ} \mathrm{C}$; chalk formed in (temperate) latitudes at about $35^{\circ} \mathrm{N}$ as 'coccoliths' required warm conditions; tillites are glacial deposits so formed in polar regions;	2	any two explanations of how the lithology is used MAX 1 mark for two correct rock types with little explanation MAX 1 mark for two correct environments with little explanation
	(b)	(i)	brachiopods	1	
		(ii)	they did not exist at the same time OR trilobites were extinct before the ammonites evolved OR the time range of Cambrian to Permian for trilobites and Jurassic to Cretaceous for ammonites (do not overlap)	1	DO NOT ALLOW answers that just give the data from the graph without explanation

Question		Answer	Marks	Guidance
	(iii)	Permo-Triassic extinction event subcontinent formation (Pangaea) fewer continental shelves means increased competition by organisms OR caused rapid fluctuations in climate OR fewer nutrients brought down from rivers OR altered salinity in the oceans as less shallow sea for evaporation; major volcanic activity emission of poisonous gases caused acid rain OR effect from gases caused rise in temperature OR ash lowered global temperature by blocking sunlight OR greenhouse gases $\mathrm{CO}_{2} / \mathrm{SO}_{2}$ cause increase in temperature; methane hydrates are solid up to around $18^{\circ} \mathrm{C}$ then gases are released above this temperature OR increases in global temperature releases methane from sediments which causes further warming;	1 2	any two causes stated AND then described for each mark.
(c)	(i)	```suture type H ceratitic AND J ammonitic geological range G Permian/Triassic AND J Cretaceous suture diagram F nautiloid simple curved line OR straight line AND ceratitic smooth saddles and crenulated lobes```	1 1 1	6 correct for 3 marks 5 or 4 correct for 2 marks 3 or 2 correct for 1 mark
	(ii)	increase attachment area OR surface area for strength OR increase strength to swim deeper OR to allow exploitation of different environments	1	

| Question | | Answer | Marks | Guidance |
| :--- | :--- | :--- | :--- | :---: | :---: |
| | (iii) | in F septal necks point towards the protoconch (retrosiphonate)
 AND
 in J they point towards the aperture (prosiphonate)
 Alternative answer
 In F the septal necks are central in the chambers
 AND
 In J they are eccentric or ventral | 1 | both needed for one mark |
| | (iv) | to support the siphuncle | | |

Question		Answer	Marks	Guidance
$\mathbf{7}$	characteristics of ornithiscians pubis points backwards; hip bones similar to that of birds/bird-hipped; front teeth small or absent; teeth maybe replaced at the front by a horn beak OR are described as duck-billed dinosaurs; many had bony plates e.g. Stegosaurus for armour or defence; tiny grooves in plates may have housed blood vessels acting as heat exchangers;	4	may state the characteristics as a list	

Question	Answer	Marks	Guidance
	adaptation to life on land - Iguanodon large heavily built with heavy shoulders and forelimbs for stability and defence; skull large and thick for protection; toothless beak or horny plate described used to crop vegetation; cheek teeth (small and leaf shaped) or long series of teeth in the jaw described used to grind up vegetation; hinged upper jaw OR moves side to side to allow chewing vegetation; hands had three digits (fingers) which ended in hooves to escape from predators; hands had thumb spike present to be a weapon or obtain food; hands had elongate fifth finger to allow foraging for food; quadrupedal to walk on all four legs OR used tail as a counterbalance OR to remain stable whilst grazing; bipedal rear up to protect itself from attacking predators OR to reach high vegetation; backbone and tail stiffened (as it grew) OR backbone and tail ossified made it easier for adults to walk on all fours OR increase stability; tail stiffened OR heavy strong tail allowed tail to be used as a defence;	6	must match each morphological adaptation to the mode of life not simply state a list
	Total	10	

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU

A
PART OF THE CAMBRIDGE ASSESSMENT

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553
© OCR 2013

