RECOGNISING ACHIEVEMENT
GCE

Geology

Advanced Subsidiary GCE

Mark Scheme for June 2012

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2012
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

Annotations

Annotation	Meaning
2	Unclear
[T]	Benefit of doubt given
[40]1	Contradiction
3	Incorrect response
[-[]	Error carried forward
\square	Ignore
$\square \square$	Reject
\%	Benefit of doubt not given
-	Omission mark
-	Correct response
\square	Point has been noted, but no credit has been given
[1]	Poor diagram

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
-	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Question} \& Answer \& Marks \& Additional \\
\hline (c) \& \& \begin{tabular}{l}
name: marble / (meta)quartzite / spotted rock / andalusite rock / hornfels; texture: description of granoblastic / sugary / equidimensional crystals / random / interlocking mosaic \\
texture MUST match correct named rock
\end{tabular} \& \[
1
\]
\[
1
\] \& ALLOW andalusite or spotted slate MUST describe DO NOT ALLOW description of grains / foliated texture ALLOW description of porphyroblastic texture \\
\hline (d) \& (i) \& convergent / destructive / subduction zone / island arc \& 1 \& IGNORE listing of oceanic / continental plates \\
\hline \& (ii) \& arrows at \(90^{\circ}\) to trench, pointing inwards to trench \& 1 \& MUST have two arrows pointing inwards \\
\hline \& (iii) \& regional \& 1 \& ALLOW regional and burial \\
\hline \& (iv) \& high pressure low temperature \& 1 \& ALLOW low temperature high pressure - must have both parts ALLOW blue schist belt / paired metamorphic belt \\
\hline \& (v) \& \begin{tabular}{l}
belt C / high pressure low temperature belt: high pressure due to collision of plates OR close to trench OR (at top of) subduction zone OR scraped up sediments formed belt C OR burial metamorphism occurs at trench OR low heat flow due to subduction of cold oceanic crust OR low heat flow due to cold wet sediments in trench; \\
low pressure and high temperature belt: high temperature due to rising magma OR due to partial melting (of descending plate) OR due to volcanoes OR due to intrusion of batholiths OR low(er) pressure as further from point of collision of plates
\end{tabular} \& 1

1 \& ALLOW explanation for pressure conditions OR explanation for temperature conditions for each belt MAX 1 for general description of processes at convergent margins if it is not clear which belt is being described ALLOW description of blue schist if not given in 1(d)(iv)

\hline \& \& Total \& 18 \&

\hline
\end{tabular}

Question		Answer	Marks	Guidance
	(ii)	tuff / agglomerate / ignimbrite / pumice	1	MUST be rock not unconsolidated material
	(iii)	magma erupted onto the surface OR extruded magma	1	ALLOW molten rock / liquid as an alternative to magma
	(iv)	andesite / rhyolite / pumice / obsidian	1	DO NOT ALLOW pumice if already given for 2(b)(ii)
	(v)	convergent OR destructive OR subduction zone OR island arc OR oceanic continental plate margin	1	DO NOT ALLOW continent continent convergent plate margin
(c)		description: the longer the time interval between eruptions the higher the silica percentage of erupted materials OR the shorter the time interval between eruptions the lower the silica percentage of erupted materials OR the eruptions became more frequent after 1970 explanation: when magma is in magma chamber for a long time (magmatic) differentiation / fractional crystallisation / gravity settling takes place denser / first formed / mafic minerals sink or settle out; more silicic / intermediate magma is produced OR the volcano erupts from the top of the magma chamber	1 2	ALLOW AW ALLOW comparison of values from graph ANY 2 ALLOW any correct named mafic mineral
		Total	18	

Question			Answer	Marks	Guidance
3	(a)	(i)	definition: sorting is the degree to which particles are the same size OR the range of grain sizes in a sediment OR poorly sorted means there is a wide range of grain sizes and well sorted means the grains are all the same size diagrams showing: poorly sorted - mix of grain sizes and well sorted - grains all the same size	1 1	MAX 1 if definition includes shape IGNORE grain shape on diagrams
		(ii)	coefficient of sorting: 0.4; description: well sorted	1 1	ALLOW 0.35 to 0.45 ALLOW ECF for description if incorrect working clearly shown
	(b)	(i)	G river flood plain / deep sea; H alluvial fan; J aeolian dune / beach	3	1 MARK for each correct environment DO NOT ALLOW contradictions
		(ii)	glacial boulder clay explanation: formed from deposition of all the sediment carried in the ice OR all sizes are transported in ice OR dropped with no sorting as ice melts OR boulders are carried in ice and clay forms by crushing at base of glacier	1 1	diagram should show all grain sizes ALLOW just clay and gravel MUST shade at least 50% of the clay and gravel columns ALLOW AW MUST give explanation of ice transport - not just repeat description of the diagram
	(c)		K orthoquartzite / conglomerate; L greywacke / breccia; M shale	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	ALLOW mudstone / clay
			Total	12	

Question			Answer	Marks	Guidance
4	(a)		description: a delta is where a river meets the sea / lake OR at the mouth of a river; explanation: deposition occurs due to a loss of energy OR deposition occurs where the energy is low / there is no current OR sediment is not carried away and builds up OR coarsest grains are deposited closest to shore	1 1	
	(b)	(i)	topsets: either coal layer and the seat earth (and coarse sandstone); foresets: cross bedded sandstone (and coarse sandstone); bottomsets: shales with marine fossils only	2	$\begin{aligned} & \text { all } 3 \text { correct = } 2 \text { marks } \\ & 2 \text { or } 1 \text { correct }=1 \text { mark } \end{aligned}$
		(ii)	topset, foreset and bottomset beds shown in correct order; angle of delta front shown at less than 45°; any correct internal structure shown within delta	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	MAX 2 if plan view drawn - 1 mark for correct order, 1 mark for correct pattern of distributary channels
	(c)		cyclothem	1	
	(d)	(i)	unidirectional current OR current shown in one direction with arrow / label OR sediment / sand transported downstream; ripple gentle on up current side and steep on down current side OR down current side drawn / labelled at realistic angle (max 37 degrees); sediment / sand moving by saltation OR sediment / sand deposited on down current side OR ripples migrate downstream	2	ANY 2 MAX 1 if no label on diagram (an arrow is a label) MAX 1 if ripples drawn with crests overhanging MARK labels as text

| Question | | Answer | Marks | Guidance |
| :--- | :--- | :--- | :--- | :--- | :--- |
| (e) | (ii) | each bedding plane 'U' shaped / concave upwards;
 beds shown cut off / truncated at the top;
 scale between 3 and 100 cm per bed
 beds shown dipping at less than 37° | ANY 2 correct for 1 mark | |
| | geological column / stratigraphic column;
 eras;
 systems / periods | DO NOT ALLOW very steep dips
 on diagram
 MUST have at least 1 label | | |

Question			Answer					Marks	Guidance
5	(a)	(i)						2	all points plotted correctly = 1 mark; points joined by straight lines or curve $=1$ mark DO NOT ALLOW straight line of best fit
		(ii)	as depth increases porosity decreases pore space is reduced due to compaction (at depth) OR increase in cement fills the pore space (at depth) OR particles move closer together (at depth) OR load / confining pressure increases with depth OR weight of overburden increases with depth					1	ORA
		(iii)						1	
		(iv)	$46^{\circ} \mathrm{C}$					1	
	(b)	(i)	16					1	ALLOW ratio of 16:1
		(ii)	ratio of peat to lignite is $16: 5(16 / 5)=3.2: 1$ so 0.5 m lignite requires $3.2 \times 0.5=\underline{1.6} \mathrm{~m}$ of peat					1	

Question		Answer	Marks	Guidance
	(iii)	(compaction / load pressure / weight of overburden causes) thickness to decrease; water is driven out / volatiles are driven out; carbon increases / ratio of carbon increases / calorific value increases / rank increases; plant fragments no longer recognisable / density increases / colour gets darker / hardness increases / reflectance increases	2	ANY 2 ALLOW any correct named volatile
(c)		diagenesis is a sedimentary process that operates at low temperatures and pressures OR diagenesis occurs below $150-200^{\circ} \mathrm{C}$ OR diagenesis occurs below 2kb / 200MPa; burial metamorphism occurs at high pressures but low temperatures OR burial metamorphism occurs above $150-200^{\circ} \mathrm{C}$ OR burial metamorphism occurs above 2kb / 200MPa	1 1	MAX 1 for general correct statement comparing the two processes
(d)	(i)	contact / thermal	1	
	(ii)	P spotted rock; Q hornfels; \mathbf{R} (meta)quartzite; S marble	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	ALLOW spotted slate
	(iii)	in the east the dip of the contact is shallow / gentle / any angle between 1° and 30° OR in the west the dip of the contact is steep / any angle between 50° and 90° OR the east is shallower than the west	1	ALLOW a correct diagram DO NOT ALLOW discussion of dip of aureole or dip of beds
		Total	17	

| Question | | Answer | Marks | Guidance |
| :---: | :---: | :--- | :--- | :---: | :---: |
| 6 | | | | |

Question		Answer	Marks	Guidance
7		major intrusions - composed of granite / granodiorite / silicic / intermediate; - batholiths are major / large scale intrusions / have surface area greater than $100 \mathrm{~km}^{2}$ / are discordant / have chilled margins; - plutonic / intruded at depth / more than 10 km deep / form in fold mountain belts; - the crystal size will be coarse / > 5 mm ; - pieces of the country rock may be incorporated as xenoliths / assimilation of country rocks may have occurred / intruded by stoping / intruded as diapirs; may have hydrothermal activity / pegmatites / veins associated with them; cross section diagram to show a batholith OR thin section of granite / granodiorite	1 1 1 1 1 1 1	MAX 6 for major intrusions rock type(s) MUST be named for max marks MUST describe batholith ALLOW description of any other correct named major intrusion ALLOW coarse-grained, NOT coarse grains DO NOT ALLOW repetition of text on diagrams MARK labels as text
		minor intrusions - \quad sills and dykes are usually composed of dolerite / mafic OR could be silicic / intermediate; - dykes cut across bedding / are discordant / suitable labelled diagram; - \quad sills are parallel to bedding / are concordant / suitable labelled diagram; - transgressive sills are generally concordant but occasionally discordant / suitable labelled diagram; - hypabyssal / intruded close to the surface / less than 1 km deep; - the crystal size will be medium / 1-5 mm; - have chilled and baked margins; - description of chilled OR baked margins: margins of the intrusion are chilled / may be fine grained / glassy / composed of basalt OR the (country) rocks are baked / recrystallised next to the contact of the intrusion; may have cumulate layering / columnar jointing	$\begin{aligned} & 1 \\ & \\ & 1 \\ & 1 \\ & 1 \\ & \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	MAX 6 for minor intrusions rock type(s) must be named for max marks ALLOW any correct named hypabyssal rock diagrams MUST show beds in country rock ALLOW description of any other correct named minor intrusion ALLOW medium-grained, NOT medium grains MAX 1 if location of chilled and baked margins is not clear DO NOT ALLOW repetition of text on diagrams MARK labels as text
		Total	10	

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
PARTCFTHE
CAMBRDGE ASSESSMENT
GMOMP
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

