Geology

Mark Schemes for the Units

June 2007

OCR (Oxford, Cambridge and RSA Examinations) is a unitary awarding body, established by the University of Cambridge Local Examinations Syndicate and the RSA Examinations Board in January 1998. OCR provides a full range of GCSE, A level, GNVQ, Key Skills and other qualifications for schools and colleges in the United Kingdom, including those previously provided by MEG and OCEAC. It is also responsible for developing new syllabuses to meet national requirements and the needs of students and teachers.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2007
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 0DL
Telephone: 08708706622
Facsimile: 08708706621
E-mail: publications@ocr.org.uk

CONTENTS

Advanced GCE Geology (7884)
 Advanced Subsidiary GCE Geology (3884)

MARK SCHEMES FOR THE UNITS

Unit Content Page
Global Tectonics and Global Structures 1
The Rock Cycle - Processes and Products 11
Economic and Environmental Geology 17
2834
Palaeontology 27
2835 Petrology 35
2836 Economic and Environmental Geology 43
Grade Thresholds 49

Mark Scheme 2831 June 2007

ADVICE TO EXAMINERS ON THE ANNOTATION OF SCRIPTS

1. Please ensure that you use the final version of the Mark Scheme.

You are advised to destroy all draft versions.
2. Please mark all post-standardisation scripts in red ink. A tick (\checkmark) should be used for each answer judged worthy of a mark. Ticks should be placed as close as possible to the point in the answer where the mark has been awarded. The number of ticks should be the same as the number of marks awarded. If two (or more) responses are required for one mark, use only one tick. Half marks ($1 / 2$) should never be used.
3. The following annotations may be used when marking. No comments should be written on scripts unless they relate directly to the mark scheme. Remember that scripts may be returned to Centres.
$x \quad=$ incorrect response (errors may also be underlined)
$\wedge \quad=$ omission mark
bod = benefit of the doubt (where professional judgement has been used)
ecf = error carried forward (in consequential marking)
con = contradiction (in cases where candidates contradict themselves in the same response)
sf $\quad=$ error in the number of significant figures
4. The marks awarded for each part question should be indicated in the margin provided on the right hand side of the page. The mark total for each question should be ringed at the end of the question, on the right hand side. These totals should be added up to give the final total on the front of the paper.
5. In cases where candidates are required to give a specific number of answers, (e.g. 'give three reasons'), mark the first answer(s) given up to the total number required. Strike through the remainder. In specific cases where this rule cannot be applied, the exact procedure to be used is given in the mark scheme.
6. Correct answers to calculations should gain full credit even if no working is shown, unless otherwise indicated in the mark scheme. (An instruction on the paper to 'Show your working' is to help candidates, who may then gain partial credit even if their final answer is not correct.)
7. Strike through all blank spaces and / or pages in order to give a clear indication that the whole of the script has been considered.
8. An element of professional judgement is required in the marking of any written paper, and candidates may not use the exact words that appear in the mark scheme. If the science is correct and answers the question, then the mark(s) should normally be credited. If you are in doubt about the validity of any answer, contact your Team Leader / Principal Examiner for guidance.

An \mathbf{X} in the suitable region
1 (a) (ii) Not likely to collapse/better foundations/most stable area seismically/solid/consolidated ground not affected by liquefaction
not affected by landslides near cliff
away from coastline/reduced tsunami impact
1 (a) (iii) $\mathrm{A} Y$ in the unsuitable area
1 (b) (i) Social:
People evacuate
Saves lives
Possible looting or riots
Road chaos during evacuation

Economic:

Value of houses drops
May not get house insurance
Industry/businesses may close
Less money for local infrastructure
Buildings will be better prepared so less damage
Better organised emergency services

1 (c) (iv) Strange animal behaviour (or example)
Tiltmeters/lasers/satellites/GPS measure ground movement/train gauges show change/gravity change
(Radon) gas levels increase/change
Foreshocks increase
Rise in water table/changing water table
P wave velocities change
Electrical resistivity changes
Release/increase of electricity/earthquake lights/change in local magnetic field
If just a list max 1 Any 2
Total:
17

2 (c) (i)

1-2 points correct $=1$
3-6 points correct =2
correct axes (needs a 0 at origin) $=1$
best fit line (through origin and straight) = 1
2 (c) (ii) Correct working shown $=1$
5cm/year +/- 0.2 cm/year ecf
2 (c) (iii) $10 \mathrm{~cm} /$ year $+/-0.4 \mathrm{~cm} /$ year ecf
2 (c) (iv) Due to sea floor spreading
Spreading rate equal on both sides
New crust created at the ocean ridge then moves apart
any 2
Total: 18
Question Expected Answers
Marks

3 (a) (i) Synform/syncline
Asymmetrical/fold striking N-S/limbs dipping W and E/closed/angular
3 (a) (ii)

Both correct but no label $=1$ max
3 (a) (iii) Limb A angle of dip $35^{\circ}-55^{\circ}$
Direction of dip East
Limb B angle of dip $60^{\circ}-85^{\circ}$
Direction of dip West
Any 2 correct = 1
All 4 correct $=2$
3 (a) (iv) On conglomerate (anywhere on the bed) must be labelled
3 (b) Fold older than the fault and unconformity
Fault older than the unconformity but younger than the fold
Unconformity younger than the fold and fault
All 3 in correct order $=2$
2 correct $=1$
3 (c) technical term description
mylonite Fine-grained rock with fractured crystal fragments in a streaky, very fine-grained matrix.
slickensides Parallel scratches and grooves produced by fault movement
fault breccia Angular fragments of rock set in a finer-grained matrix produced by grinding of rock against rock.

1 or 2 correct $=1$ mark
3 correct $=2$ marks

3 (d) (i)

(ii)

Shallow limb

Steep limb $=1$
2 shallow limbs $=1$
Recumbent fold $=0$

Question	Expected Answers	Marks
4	composition	
	outer core - iron, nickel and sulphur/ inner core - iron - nickel	1
	Earth's magnetic field generated by iron	1
	lron/metallic/iron - nickel meteorites same as core	1
	Whole Earth density (5.5) compared to crust/mantle	1

Physical state
Outer core $=$ liquid/Inner core $=$ solidConvection currents create magnetic fieldS waves are stopped at the outer core/S wave shadow zone
Swaves
P waves are slowed down 1
P waves are refracted 1
P wave shadow zone 1
Arrival of P waves faster than expected/speed up in inner core 1
S waves exist in the inner core 1
Lehman/outer - inner core discontinuity 1
Mark labelled diagrams as text$\max 5$

Quality of Written Communication

2 marks Answers are structured clearly and logically, so that the candidate communicates effectively, uses a wide range of specialist terms with precision and spelling, punctuation and grammar are accurate.
1 mark There are shortcomings in the structure of the answer, however, the candidate is able to communicate knowledge and ideas adequately, a limited range of specialist terms are used appropriately and spelling, punctuation and grammar are generally accurate with few errors.
0 marks There are severe shortcomings in the organisation and presentation of the answer, leading to a failure to communicate knowledge and ideas. There are significant errors in the use of language, spelling, punctuation and grammar, which makes the candidate's meaning uncertain.
[quality of written communication max 2]

Mark Scheme 2832 June 2007
QuestionExpected answers Marks
1 (a)(i) (repeated sequence of) processes that link all three major rock groups/ the interlinked formation of the three different rock groups. 1
(ii) correct order, clockwise starting on left of diagram is igneous, sedimentary, metamorphic two or three correct= 2
one correct= 1
(iii) X below the igneous box / between igneous and metamorphic box 1
Y above the sedimentary box but below the ground surface 1
(iv) partial meltingmagma accumulation/upward movement of magma/stoping/making spacefor the intrusioncooling of magma/cooling of melt/cooling of molten rockdifferentiation/assimilation/crystallisation/solidificationminor intrusives at shallow depth cooling fairly slowly/major intrusives at depth cooling very slowlyany 2
(v) lava (any named basic/intermediate/acid) pyroclasts (bombs/blocks/lapilli/ash/tephra/ignimbrite/tuff/agglomerate/ nuee ardente/pyrocastic flow extrusive rocks max1
gas $/ \mathrm{SO}_{2}$ /other correct named volcanic gas any 2
(b) igneous= C Esedimentary= A F Gmetamorphic= B D Hno mark for letters used in more than one box
7-8 correct= 4
5-6 correct= 3
3-4 correct= 2
$1-2$ correct= 1
(c) (i) geological column/geological time scale/geological time line/ stratigraphic column 1
(ii) system/period immediately beneath K (Quaternary) shaded 1
(iii) $\mathrm{J}=$ era 1
$\mathrm{K}=$ system/period 1
QuestionExpected answers Marks
2 (a)(i) L is the parent of O 1
N is the parent of M 1
(ii) rolling of a pellet/oolith/rock fragment/shell fragment /sand grainin carbonate mud /concentric layers of CaCO_{3}sea water saturated in calcium carbonate/ high rates of evaporation/CaCO_{3} precipitatedtidal/wave action/ high /medium energy conditionsany 2
(iii) under water/ oscillating currents/bi-directional currents/flow direction 1
oscillates/AW;beach/inter-tidal/sea floor/large lake/affected by wave action/wave action1caused by winds
(iv) symmetrical shape/pointed crests and rounded troughs/gradient $<37^{\circ}$scale showing ripple marks up to 20 cm in height1
NOT scale bar without recognisable diagram
(b) (i) water freezes in cracks / joints / bedding planeswater expands (9\%) on freezing / exerts pressure which forces rock apart(frost shattering/ freeze thaw)continual processany 2
If named only max 1
(ii) angular 1(iii) gravity/mass movement/mass wasting/falling/rolling/solifluction landslideany 1(iv) rainwater containing dissolved CO_{2} becomes carbonic acidacid water reacts with/dissolves carbonates/limestoneforms soluble hydrogen carbonates/
$\mathrm{CaCO}_{3}+\mathrm{H}^{+}+\mathrm{HCO}_{3}^{-} \rightarrow \mathrm{Ca}^{++}+2 \mathrm{HCO}_{3}{ }^{-}$ any 2If carbonation only max 1
(c) reference to high energy conditions/
fragments of organic origin
in carbonate mud matrix
burial/compaction/growth of calcite crystals to form micrite/sparite
QuestionExpected answers Marks3(a) (i) From top to bottom on diagramvolcanichypabyssalplutonic
two or three correct= 2 one correct= 1
(ii) horizontal structure on left of diagram 1
(b) (i) $\mathrm{P}=$ fine $/<1 \mathrm{~mm}$ 1
$Q=$ coarse / $6-15 \mathrm{~mm}$ 1
(ii) gas bubbles in the magma/gas dissolved in magma/trapped in rock/exsolving rock cools quickly leaving oval/ellipsoid holes/rapid cooling of lava
(iii) at depth crystals have longer time to grow/cool slowly = coarse grained/AW at surface crystals have short time to grow /cool quickly = fine grained/AW hypabyssal / intermediate depths conditions are intermediate between volcanic and plutonic/surface and great depth = medium grained /AW very rapid cooling under water/at surface = glassy any3
(c) (i) island arc/destructive plate boundary/subduction/adjacent to ocean trench/oceanic oceanic boundary;
1
(partial) melting/formation of magma/melting point lowered by release of water/heat produced by friction/conduction/rising diapirs1
(ii) $2 \div 12 \times 100 / 100 \div 12 \times 2=16.66 \% / 16.6 \% / 16.7 \%$
(iii) there was a major eruption in 1815 /preceding year/Tambora eruption/ global extent of the cooling depends on the force of the eruption;
ash in the atmosphere/volcanic gases are thought to be responsible for global cooling amount of particular gases emitted/sulphur dioxide molecules remain in upper atmosphere for years/they absorb solar radiation/reflect solar radiation into space/block sunlight location of the volcano with respect to the Earth 's global atmospheric circulation patterns.
QuestionExpected answers Marks
4 mass of overlying sediment/hydrostatic pressure/load pressure 1
/compression
squeezes fluids from pore spaces 1
porosity reduced/no pore spaces 1
close packing of grains/ volume reduction/density increase 1
grain contact solution eliminates porosity 1
primarily affects clays 1
fluids pass through pore spaces 1
minerals carried in solution 1
minerals precipitate in pore spaces/named minerals/crystallise out /deposited in pore spaces 1
porosity reduced further 1
reduced permeability 1
pressure welding/pressure solution 1
primarily affects quartz/sand grains 1
compaction and cementation/are diagenetic processes/both affectsediments/lead to lithification of sediments/ lithification is process by whichsediment becomes rock1
diagrams marked as text 1
diagram for compaction 1
diagram for cementation 1
If only one described(including diagram) $\max 6$
If no diagrams $\max 6$
2 marks Answers are structured clearly and logically, so that the candidate communicates effectively, uses a wide range of specialist terms with precision and spelling, punctuation and grammar are accurate.
1 mark There are shortcomings in the structure of the answer, however, the candidate is able to communicate knowledge and ideas adequately, a limited range of specialist terms are used appropriately and spelling, punctuation and grammar are generally accurate with few errors.
0 marks There are severe shortcomings in the organisation and presentation of the answer, leading to a failure to communicate knowledge and ideas. There are significant errors in the use of language, spelling, punctuation and grammar which makes the candidate's meaning uncertain.
quality of written communication $\max 2$
Question total 10

Mark Scheme 2833 June 2007

ADVICE TO EXAMINERS ON THE ANNOTATION OF SCRIPTS

3. Please ensure that you use the final version of the Mark Scheme. You are advised to destroy all draft versions.
4. Please mark all post-standardisation scripts in red ink. A tick (\checkmark) should be used for each answer judged worthy of a mark. Ticks should be placed as close as possible to the point in the answer where the mark has been awarded. The number of ticks should be the same as the number of marks awarded. If two (or more) responses are required for one mark, use only one tick. Half marks ($1 / 2$) should never be used.
5. The following annotations may be used when marking. No comments should be written on scripts unless they relate directly to the mark scheme. Remember that scripts may be returned to Centres.
$x \quad=$ incorrect response (errors may also be underlined)
^ = omission mark
bod = benefit of the doubt (where professional judgement has been used)
ecf = error carried forward (in consequential marking)
con = contradiction (in cases where candidates contradict themselves in the same response)
sf $\quad=$ error in the number of significant figures
6. The marks awarded for each part question should be indicated in the margin provided on the right hand side of the page. The mark total for each question should be ringed at the end of the question, on the right hand side. These totals should be added up to give the final total on the front of the paper.
7. In cases where candidates are required to give a specific number of answers, (e.g. 'give three reasons'), mark the first answer(s) given up to the total number required. Strike through the remainder. In specific cases where this rule cannot be applied, the exact procedure to be used is given in the mark scheme.
8. Correct answers to calculations should gain full credit even if no working is shown, unless otherwise indicated in the mark scheme. (An instruction on the paper to 'Show your working' is to help candidates, who may then gain partial credit even if their final answer is not correct.)
9. Strike through all blank spaces and/or pages in order to give a clear indication that the whole of the script has been considered.
10. An element of professional judgement is required in the marking of any written paper, and candidates may not use the exact words that appear in the mark scheme. If the science is correct and answers the question, then the mark(s) should normally be credited. If you are in doubt about the validity of any answer, contact your Team Leader/Principal Examiner for guidance.

Mark Scheme Page 1 of 4	Unit Code Session Year $2833 / 01$ May 2007	Version Final
Abbreviations, annotations and conventions used in the Mark Scheme	I $=$ alternative and acceptable answers for the same markin $;$ $=$ separates marking points NOT $=$ answers which are not worthy of credit () $=$ words which are not essential to gain credit $=$ (underlining) key words which must be used to gain cre ecf $=$ error carried forward AW $=$ alternative wording ora $=$ or reverse argument	point
Question 1	Expected Answers	Marks
(a)	high porosity/porous/rock in which water can be stored; high permeability/permeable/rock in which water can flow/good interconnections between the pores/jointed; well rounded, well sorted grains; little or no cementation/poorly consolidated/unlithified	any 2
(b)	water table - line draw from intersection of contact of upper clay and the aquifer with the topographic surface to intersection of contact of lower clay and the aquifer with the topographic surface; spring - marked at intersection of contact of aquifer and either clay layer with the topographic surface; confined aquifer - area in aquifer shaded to the right of and below the contact of the upper clay and the aquifer	1 1 1
(c) (i) (ii) (iii)	water will rise up the well/water will flow out onto surface; water is under (high hydrostatic) pressure/water is confined under impermeable rocks/water table is higher than the well/pressure is released artesian level of water table falls/well becomes dry/cone of depression forms/hydrostatic/water pressure drops so water no longer flows up/subsidence at surface/salt water encroachment (if near coast)	1 any 1 1 any 1

(d)	hydrostatic pressure - water pressure at a point in a body of water/pressure caused by the weight of overlying column of water/hydraulic head; hydraulic gradient - slope down which the water moves/slope of the water table/difference in hydrostatic pressure/hydraulic head between two points (divided by the distance between them)/water moves from high pressure to low pressure/water moves down the pressure gradient (accept alternative wording)	1
(e)	rocks act as natural filter/purifies water/water does not require treatment/chlorination/dissolved minerals give health benefits/ no loss of water through evaporation/less seasonal/ no requirement to build expensive/unsightly/environmentally damaging dams and reservoirs (must qualify economics with discussion) (accept reverse argument; do not accept less likely to be polluted)	any 1
		Total: 12

Mark Scheme Page 2 of 4	Unit Code 2833/01	Session May	$\begin{aligned} & \hline \text { Year } \\ & 2007 \end{aligned}$	Version Final
Abbreviations, annotations and conventions used in the Mark Scheme	I $=$ alternative and acceptable answers for the same marking point $;$ $=$ separates marking points NOT $=$ answers which are not worthy of credit () $=$ words which are not essential to gain credit $=$ (underlining) key words which must be used to gain credit ecf $=$ error carried forward AW $=$ alternative wording ora $=$ or reverse argument			
Question 2	Expected Answers oil coal sedimentary environment deep marine deltaic/delta top/swamp/marsh/bog/floodplain type of organic matter plankton/micro-organisms/sapropel terrestrial vegetation oxygen conditions anoxic sea bed conditions reducing/anoxic/anaerobic/stagnant rate of sedimentation slow oxygen / fast/rapid			Marks
(a)				1 1 1 1
(b) $\begin{aligned} & \text { (i) } \\ & \\ & \text { (ii) }\end{aligned}$	Kimmeridge Clay accept: Speeton Clay/Brent Group shales/clay/Jurassic shales/mudstones/clays the source rock did not contain plankton/was not suitable for oil formation/there is no Kimmeridge Clay in this area/the conditions were different/different source rock/the source rock is the Carboniferous coal measures/origin was from terrestrial vegetation/methane/gas/volatiles escaped from the coal as it formed/the gas has been trapped under cap/impermeable rocks/the gas has not escaped / temperatures and pressures were high enough for gas to be produced/suitable/named traps are present			any 2

(c) (i)	horizontal shading in the top of the limestone unit at the crest of the anticline (accept if source rock has been shaded as well) (ii)	1
the limestone is a suitable reservoir rock/is porous and		
permeable;		
the oil rises to the top of the reservoir rock due to low density;		
the shale is a suitable cap rock/is impermeable/there is a cap		
rock above;		
the anticline/fold is a suitable trap/concentrates the oil in one		
place/at the top of the anticline;		
the shale and limestone with 5\% organic carbon is a suitable		
source rock		
(iii)	oil may have been destroyed by metamorphism; oil may have been destroyed by heat from the igneous intrusion/an igneous intrusion is present; oil may have escaped up/along the fault (do not accept down the fault); oil may have escaped through the limestone/there is no cap rock over part of the limestone a (production) well/borehole is drilled into the reservoir rock/limestone; directional/deviation/slant drilling techniques can be used to withdraw oil from a large area; the well needs to be capped off to prevent oil escaping/spills; the oil comes to the surface under natural pressure/forms a gusher/release of pressure causes oil to rise; the pressure is the result of gases coming out of solution/expansion of the gas above/water pushing up from under the oil; typicilly 20-30\% of the oil can be recovered in this way/70-80\% of oil is left in the reservoir rock	any 2
(iv)	any	

Mark Scheme Page 3 of 4	Unit Code 2833/01	Session May	$\begin{aligned} & \hline \text { Year } \\ & 2007 \end{aligned}$	Version Final
Abbreviations, annotations and conventions used in the Mark Scheme	```/ = alternative and acceptable answers for the same marking point NOT \(=\) separates marking points () = words which are not essential to gain credit = (underlining) key words which must be used to gain credit ecf = error carried forward AW = alternative wording ora = or reverse argument```			
Question 3	Expected Answers longwall (retreat) mining; (two) roadways/tunnels are driven out from the shaft/ a ($100-200 \mathrm{~m}$) long/longwall/coalface is established/ the coal is cut with a mechanical cutter/shearer/ coal falls onto a conveyor belt/ the roof is supported by (mobile) steel/hydraulic chocks/rams/supports/ the mined area is allowed to collapse/ mining takes places backwards/retreating towards shaft OR pillar and stall/pillar and stope/room and pillar mining (accept pillar mining); coal seams are mined from the rooms/drilling and blasting techniques may be used/pillars of rock are left to support the roof/typically a maximum of 60% of the coal is extracted/maximum safe depth is $200-300 \mathrm{~m}$ (named mining method must match description)			Marks
(a)				1 any 2 OR 1 any 2

(b) $\begin{array}{ll}\text { (i) } \\ & \\ & \\ & \\ & \\ & \\ & \\ & \text { (ii) }\end{array}$	suitable diagram showing river channel/wash out cutting into coal seam; suitable labels/text: coal seam and river channel/wash out labelled/river sediments/channel lag/sandstone/conglomerate/ sands/gravels shown in washout/coal seam is replaced by river sediments/mechanical cutter/shearer cannot cut through hard sandstone (mark labels as text) suitable diagram showing fault displacing coal seam; suitable labels/text: coal seam and fault with direction of movement labelled/coal seam is displaced/offset disrupting production/faults are zones of weakness/permeability/may cause collapse (mark labels as text)	any 2 any 2

(e)	igneous intrusion is acid/granite/a batholith; description of relationship of veins to batholith (expect diagram); hydrothermal processes occur during final crystallisation/are late stage processes; water/volatiles/incompatible elements/metals do not fit in silicate minerals/residual fluids collect to form hydrothermal fluid/is concentration method; hydrothermal fluid is a hot, watery/aqueous fluid with metals in solution; igneous intrusion is the source of heat; source of water can be igneous intrusion/surrounding groundwater; hydrothermal fluid moves out into country rock; hydrothermal fluid exploits joints/bedding planes/fractures/requires permeable/reactive/suitable named country rock; metals/ore minerals precipitate/crystallise out as fluid cools/encounters (chemically) reactive country rock; veins are formed when precipitation/crystallisation occurs in joints/bedding planes/fractures; disseminated ore/disseminations may occur when precipitation/crystallisation occurs in pore space; metals/ore minerals crystallise out in order of temperature/solubility/often show a zonation/within veins early formed ore minerals will be at edges and later formed ore minerals will be in centre; $\mathrm{a}+\mathrm{b}$ cassiterite/tin (ore)/tin oxide/is high temperature ($\sim 500^{\circ} \mathrm{C}$)/least soluble/precipitates first/is found closest to/inside intrusion; a + b galena/lead (ore)/lead sulphide/(and) sphalerite/zinc (ore)/zinc sulphide/are low temperature ($\sim 200-300^{\circ} \mathrm{C}$)/most soluble/precipitate last/are found furthest from intrusion (mark labelled diagrams as text)	
		Total: 19

Mark Scheme 2834 June 2007

QuestionExpected answers
Marks
1 (a) (i)
A Brachiopoda/Brachiopod
B Mollusca/Mollusc
group
Articulate
C Mollusca/Mollusc
Ammonite/Ammonoid/cephalopod
D Arthropoda/Arthropod
Belemnite/Coleoid/cephalopod
Trilobita/Trilobite
1 mark per row

Max 4

(ii) 1. Brachial valve/dorsal valve 1
2. Protoconch 1
3. Free cheek 1
4. Pygidium/pleura 1
(iii) $\mathrm{A}=$ sessile/benthonic 1
$B=$ nektonic 1
$\mathrm{C}=$ nektonic 1
$\mathrm{D}=$ benthonic 1
(b) (i) Strong valves/rolled around and not broken up;

Hard shells resist erosion;
Muscles hold valves together on death;
Shells remain articulated;
Quickly covered in sediments, may be found whole;
Lived in low energy environment
Any 2
(ii) Sink to bottom of ocean on death;

Aligned by currents on landing;
Streamlined/elongate shell;
May be at right angles or parallel with current (or both);
May be rolled around for a long time after death before burial;
Often transported and concentrated by currents (winnowing);
Strong guard resists erosion
Any 2
(iii) Trilobites undergo ecdysis/moulting;

Cephalon or pygidium resistant to change/does not break up easily/fused segments;
Larger or denser parts left/lighter fragments taken away in currents;
Death assemblages;
Thoracic segments/segmented pleura disarticulate;
Muscles or soft tissue holding skeleton together has decayed;
Maybe scavenged
Any 2
QuestionExpected answers Marks
2 (a)(i) Irregular/Micraster 1
(ii) petaloid ambulacra - line to stellate structure on the top of echinoid; anterior groove- line to the anterior depression; Max 2
(iii) labrum
on underside of organism/adjoining mouth/AW 1
projecting lip to protect mouth/aid feeding 1
plastron
on underside of organism/AW; 1
area of attachment for spines/for digging burrows 1
(b) (i) Petaloid ambulacra get longer/more distinct; 1
More tube feet for efficient gas exchange/improves respiration; 1
Anterior groove deepens/development of heart shape; 1
Easier channelling of food towards mouth/more efficient feeding; 1
Increase in size of test/streamlined; 1
suggestions as improved burrowing efficiency 1
(ii) $F=y o u n g e s t$
G$E=$ oldest2 correct $=1$ mark; 3 correct $=2$ marksMax 2
(c) (i) Differences
Regular v irregular/discussion of symmetry;
H has large tubercles, E does not/H had large spines, E did not;H has a central anus, E does not;H does not have an anterior groove, E does;H has apical system in centre, E has apical system away from ambs;H lacks petaloid ambs/anterior groove, E possesses themAny 2
(ii) $\mathrm{H}=$ rocky shore dweller/high energy/vagrant/benthonic/epifaunal 1
Scavenger/graze on algae/spines allow movement (by rotation)/tube feet forattachment, respiration or feeding1
QuestionExpected answers
M graptoloid/graptolite (fragment);
two uniserial stipes/
pendant/or accurate description
energy = low
water $=$ deep marine
N trilobite;
walking/resting trace/running/or accurate description
energy = low
water $=$ shallow marine
O crinoid;
stem sections/ossicle/broken after soft tissue decayed/or accurate
description
energy = medium
water $=$ shallow marine/deep marine
1 mark for possible organism; 1 mark for description;
Max 6
(ii) 5 or 6 correct points $=3$ marks
3 or 4 correct points $=2$ marks
1 or 2 correct points $=1$ mark
(b) Evidence for activity of animals;
Animals living in environment;
Evidence of diet;
Evidence for plants (seeds and fragments);
Plants/animals may give information about climate;
Evidence of land areas;
Large masses = large animals (ora)
Complete coprolites means low energy levels;
Any 2
any one point in detail $=2$ marks
(c) (i) Silicification
Fluids percolate through rocks or sediments;
dissolution (pressure solution)/hydrothermal/meteoric waters;
Voids filled by crystallising silica/silica stable in voids ;
Replacement of shelly material
Max 2
Carbonisation
organic matter trapped in sediments;
Increased pressure and temperature;
volatiles driven off as gasses (eg $\mathrm{CH}_{4}, \mathrm{H}_{2} \mathrm{O}, \mathrm{CO}_{2} \mathrm{etc}$);
s
material becomes enriched in carbon/depleted in volatiles;
Leaves thin film
Max 2
(ii) Aragonite has unstable bonds/needs to recrystallise to become stable ormore dense/polymorphs/burial increase in heat ora1
QuestionExpected answers Marks
4(a)(i) Emission of particles over time/loss of correct particles;
Parent atoms decay to daughter atoms;from an unstable nucleus/isotope;to form stable products;Measured in half livesAny 2
(ii) points plotted correctly
two or three points plotted $=1$ marksfour / five points plotted = 2 marks
correct curve $=1$ mark Max 3
(iii) particles emitted at a faster rate from $\mathrm{X} /$ parent atoms more quickly changeto daughter atoms/short half lives qualified/shorter half lives/X decays faster
Any 1
(iv) $235 \mathrm{U}=38 \%$ $X=9-11 \%$. ecf from graph 1
(v) Loss of daughter products, such as argon;Resetting of geological clock, by metamorphism;Chemical weathering or erosion (idea of removal or addition);
Dates age of clasts in sedimentary rock;
Contamination qualified;
Inaccurate equipment/methodology has large range of error;
Inaccurate half lives;
Lack of suitable minerals to use for dating;Any 3
(b) (i) 40 Ar 1
(ii) 1260 Ma Accept 1160 Ma to 1360 Ma 1
(iii) Muscovite mica/biotite mica/hornblende/glauconite/orthoclase 1
(iv) Slate/igneous rocks/some sedimentary rocks containing glauconite ecf 1
5(a) Adaptations of burrowers
Elongate valves/smooth valves; 1
Easy movement though sediment/allows burrowing; 1
Large foot/strong muscle; 1
Allows burrowing/pulls organism into sediment; 1
Long siphons/large pallial sinus; 1
Allows gas exchange and/feeding to occur out of the burrow; 1
Gapes present; 1
Allows extension of foot and siphons for burrowing; 1
Thin shells or valves; 1
Light to move through sediment/thick shells not needed (protection) 1
Suitable diagram of form eg Solen or Cardium 1
Max 4Adaptations for swimming formsThin/light shells or valves;1
To allow 'swimming'/flapping of shells; 1
Corrugated or ribbed shells; 1
High strength; 1
Monomyarian/single strong muscle; 1
Control rapid flapping of valves; 1
Ears or wings; 1
To direct currents to control direction of movement; 1
Large surface area to weight ratio; 1
Efficient displacement of water when swimming; 1
Hydrodynamic shape; 1
Suitable diagram of form eg Pecten 1
Max 4
Adaptations of attached forms
Byssus (to attach to rocks);
For attachment to substrate; 1
Streamlined/unornamented shells; 1
Lessens damage due to impact living in groups/hydrodynamic; 1
Shells equivalve; 1
Suitable example of form eg Mytilus 1
May have thick or heavy shells 1
Strong growth lines; 1
Cemented to substrate; 1
Suitable diagram of form eg Ostrea 11
Max 4
Adaptations for free lying forms
Thick or heavy shelled forms;1
Protection from high energy conditions; 1
Inequivalve; 1
Centre of gravity is lower and so more stable/not moved by currents; 1
Curved lower surface/snowshoe shaped; 1
Prevents sinking in soft sediment/stability in high energy; 1
Strong growth lines; 1
Grips the sediment; 1
Suitable diagram of form eg Ostrea or Gryphaea 1
5 (b) Similarities
Both extinct 1
Both can be colonial 1
Both Palaeozoic 1
Both made of corallites 1
Both have tabulae 1
Both have calcium carbonate skeletons 1
Both live in same conditions/similar environment/found in same rock 1
Differences
Tabulate - tabulae well developed 1
Rugose - tabulae always present 1
Tabulate - no dissepiments/sometimes present but reduced 1
Rugose - dissepiments sometimes present 1
Tabulate - radial symmetry 1
Rugose - bilateral symmetry 1
Tabulate - no axial complex/columella 1
Rugose - always has axial complex/columella 1
Tabulate - septa sometimes/reduced/poorly developed 1
Rugose - present/well developed 1
Tabulate - always colonial 1
Rugose - colonial or solitary 1
Tabulate - small corallites 1
Rugose - larger corallites 1
Tabulate - have mural pores 1
Rugose - don't have mural pores 1
Tabulate - ranges Cambrian to Permian 1
Rugose - ranges Ordovician to Permian 1
Suitable labelled diagram of tabulate form 1
Suitable labelled diagram of rugose form 1
Max 11
2 marks Answers are structured clearly and logically, so that the candidate communicates effectively, use a wide range of specialist terms with precision and spelling, punctuation and grammar are accurate.
1 mark There are shortcomings in the structure of the answer, however, the candidate is able to communicate knowledge and ideas adequately, a limited range of specialist terms are used appropriately and spelling, punctuation and grammar are generally accurate with few errors.
0 marks There are severe shortcomings in the organisation and presentation of the answer, leading to a failure to communicate knowledge and ideas. There are significant errors in the use of language, spelling, punctuation and grammar which makes the candidate's meaning uncertain.
quality of written communication $\max 2$
Question total 25

Mark Scheme 2835 June 2007
QuestionExpected answers Marks
1 (a) (i) A rhyolite 1
B obsidian/volcanic glass 1
C diorite 1
(ii) bands contorted dark and light bands/minerals separated into layers/minerals aligned banding shown on diagram
(iii) no time for crystals to form/very rapid cooling/quenching in
water/supercooling
(iv) a series of parallel semi circular lines along which the rock has broken/a fracture pattern similar to that seen in broken glass/shell shaped fracture (allow sketch to assist definition)

1

```
1
```

(b) (i) sketch correct shape

hornblende 6 sides / hexagonal cleavage drawn 2 sets at 120°
crystals are elongate
augite 8 sides
cleavage drawn 2 sets
at 90°
any 2
crystals are roughly equidimensional
Any correct description for 1 mark but must be a comparison
(ii) lamellar or repeated twinning/twin planes/simple twins/schillerisation hardness $6-6.5 / \mathrm{can}$ be scratched by steel triclinic crystals
(c) (i) D olivine
E potash feldspar/K feldspar/orthoclase
F muscovite
G quartz
$\max 3$
4 or 3 correct $=3,2=2,1=1$
(ii) olivine and Ca-rich plagioclase are high temp/>1600
quartz/G is lower temp 800°
general statement of down diagram is lower temperature $=1$ second mark for specific temps or for detail of reactions such as olivine reacts with liquid as temp drops to form lower temperature mineral
(iii) ring left part of diagram/D to biotite
(d) (i) 100% anorthite/just anorthite/pure anorthite 1
(ii) $1490^{\circ}+/-10 \quad 1$
(iii) $1274^{\circ}+/-10 \quad 1$
QuestionExpected answers Marks
2 (a)(i) Cubic/cuboid/cube 1
(ii) H fluorite/fluorspar 1
J galena 1
K pyrite/fools gold 1
(b) (i) pyrite (K) ecf 1
large crystal that grows in metamorphic rocks/large crystal embedded infiner grained groundmass/forms after the finer crystals
(ii) galena (J) ecf 1
a mineral that contains an economic metal/named economic metal/a mineral from which a useful metal may be extracted 1
(c) (i) Ldue to different hardness of minerals/coarse grain sizewearing differently so skid resistant / minerals plucked out/differential wear so surface stays roughany 2
OR allow N OR
Ndue to different hardness of minerals/fine grain sizewearing differently so skid resistant/minerals plucked out /any 2
If general statement on roadstone characteristics Max 1
(ii) gabbro if answer L OR dolerite/basalt if answer N 1
(d) high crushing strength/load bearing strengthstrong/hardnon reactive chemicallyresistant to weatheringany 2
QuestionExpected answers Marks3 (a) (i) dolerite dykes are radial/radiating along fracturescircular pattern/concentric pattern of cone sheets due to intrusion ofmagmacone sheets are perpendicular to the radial dykesany 2(ii) relationship of cone sheets and gabbro and peridotite to volcanogabbro and peridatite in magma chamber/deepest in crust
peri otite below gabbro
magna chamber as source of cone sheetsshet of done/sheetse sheatscone sheets coming up from magmabasalts a attoplbasalts in volcanolower finetie show erosion of basaltsdiagram to show allany 4
(b)(i) $\mathrm{P} \quad$ equigranular/equicrystalline 1
Q amygdaloidal (allow vesicular or corona) 1
R porphyritic (allow poikilitic) 1
(ii) $10 \mathrm{~mm}+/-1$
(iii) gas bubbles created holes
vesicles infilled by minerals
groundwaters deposited mineral calcite/quartz in vesicles any 2
OR vesicular ecf OR
trapped gas bubbles/exsolving/exsolutionrapidly cooling groundmassany 2
OR corona ecf OR
Early formed minerals (olivine)
Partially replaced by later mineral(s), (pyroxene and amphibole) any 2
(iv) two stages of cooling
phenocrysts or larger crystals formed first/cooled slowly
groundmass formed last/cooled more rapidly any 2
OR poikilitic ecf OR
early formed mineral (enclosed mineral) 1
totally enclosed by later formed mineral (enclosing mineral) 1
QuestionExpected answers4 (a) (i) erosionon outside of a bend1
deposition on inside of a bend 1
(b) (i) fining up sequence/cyclothem/ migration of meandering river system 1
(ii) flood plain covered in water only when river floods/overbank depositfinest material deposited as clay/swampy area where plants grow/lowenergy area between channelsany 2
(iii) gravels and sand deposited in the river/stream channel/as channel lag deposits sands on inside bend of meander point bar deposits/braiding/sand bars and banks any 2
(c) energy level high when sands and gravels depositedenergy level lower for mudsvertical sequence shows one place from channel to floodplaindecrease in energy from bottom to top of sequenceany 2
(d) channel migrates laterally over time/previous channel positions sediment builds up over time so vertical change sand in (lens shaped formed) channel/river bed clay layers on flood plain and eroded by channel/floods asymmetrical shape of channel/sand lens due to erosion on bends any 2
(e)(i) saltation 1
(ii) finest $/<0.02 \mathrm{~mm}$ or $<1 / 16 \mathrm{~mm} / \mathrm{mud} /$ clay/argillaceous 1
(iii) (bed load) traction/rolling/sliding 1
(f) (i) cross bedding 1
on point bar at edge of channel/sand laid down on slope of edge of river OR 1
ripple marks/cross lamination OR
sand on sand bars or channel floor/asymmetrical formed by unidirectional 1
current
OR 1
imbricate structure OR
formed in high energy conditions with pebbles parallel to current/in gravels 1where pebbles line up parallel to current1
(ii) roots in anaerobic conditions so preserved/roots not weathered or erodedstem and leaves and other fossils decay aerobically/eaten/weathered oreroded as exposed
few organisms live in the river compared to the sea/sediment too course/norapid burial
QuestionExpected answers Marks
5(a) mechanically formed those deposited by wind, sea, river, ice 1
chemically formed precipitated from sea water 1
biologically formed by organisms skeletons 1
OR
clastic as formed from fragmental material 1
non clastic formed from chemical or biological materials 1
grain size used only for clastic sedimentary rocks rudaceous/over $>2 \mathrm{~mm} /$ gravels and boulders - breccia or conglomerate 1
arenaceous , $2-0.02 \mathrm{~mm} / 2-1 / 16 \mathrm{~mm}$ sand size sediment - sandstones 1
argillaceous $/<0.02 \mathrm{~mm} / / 16 \mathrm{~mm}$ - mudstone, clay or shale 1
grain shape used only for clastic sedimentary rocks 1
shape of fragments controlled by length of transport 1
angular fragments $=$ little transport/breccia 1
rounded fragments $=$ more transport/sandstone/conglomerate 1
mineral compositionsandstones subdivided by composition into
quartzite/orthoquartzite/quartz arenite $>90 \%$ quartz 1
arkose $>25 \%$ (orthoclase) feldspar 1
greywacke high proportion of rock fragments/>15\% matrix 1
micaceous sandstone contains mica 1
desert sandstones pure quartz and iron staining 1
evaporites of sequence of salts 1
detail of halite, gypsum, anhydrite, calcite 1
limestones made of calcium carbonate/calcite 1
oolites and micrites formed by precipitation 1
coals made of carbon 1
fossil content
coals made of plants 1$\max 5$
lignite, bituminous and anthracite 1
limestones subdivided by fossils into
bioclastic made of fossil fragments 1
reef limestone rich in corals/crinoidal limestone rich in crinoids 1
chalk made of coccoliths/calacareous ooze 1
oolites few fossil fragments 1
micrites rare fossils 1
$\max 5$Mark diagrams as text12
QuestionExpected answers Marks
5 (b) shale as (parent rock) made of clay minerals 1
regional metamorphism needs both temperature and pressure 1
description of Barrovian zones/index minerals listed 1
sequence of regional metamorphism - slate > phyllite >schist >gneiss 1
low grade regional metamorphism - low temperatures and pressures 1
slate is a fine grained rock 1
index minerals chlorite and mica formed by recrystallisation 1
formation of slaty cleavage 1
minerals aligned at 90° to pressure 1
relict features preserved 1
phyllite is a fine/medium grained rock 1
have higher T/P conditions 1
more mica/less clay minerals/chlorite 1
crenulation cleavage/phyllitic texture 1
medium grade regional metamorphism - medium temperatures and pressures1
schist is a medium grained rock 1
schistose texture, foliation 1
index mineral biotite / garnet minerals grow 1
(porphyroblasts of) garnet 1
index mineral kyanite (as Al2 SiO5 polymorph)
high grade regional metamorphism -high temperatures and pressures 1
gneiss is a medium / coarse grained rock 1
rich in quartz, biotite and K feldspar 1
gneissose banding (with light and dark bands) 1
light bands felsic minerals, dark bands mafic minerals 1
index mineral sillimanite (as $\mathrm{Al}_{2} \mathrm{SiO}_{5}$ polymorph) 1
Diagrams to show textures as text
QWC
2 marks Answers are structured clearly and logically, so that the candidate communicates effectively, uses a wide range of specialist terms with precision and spelling, punctuation and grammar are accurate.
1 mark There are shortcomings in the structure of the answer, however, the candidate is able to communicate knowledge and ideas adequately, a limited range of specialist terms are used appropriately and spelling, punctuation and grammar are generally accurate with few errors.
0 marks There are severe shortcomings in the organisation and presentation of the answer, leading to a failure to communicate knowledge and ideas. There are significant errors in the use of language, spelling, punctuation and grammar which makes the candidate's meaning uncertain.

Mark Scheme 2836 June 2007

QuestionExpected answers Marks
1 (a) (i) Grain size medium/arenaceous/sand sized/varied / graded coarse to 1 fine/size within range $0.02-2 \mathrm{~mm}$
Grain shape sub angular/angular 1
Composition rock fragments, quartz, (sand grains), feldspar, clay (mud) (must have 2 min) 1
Sorting poor/unsorted/description of grading and sorting 1

(ii) Made of clay minerals/platey clay

(Very) fine grained/argillaceous

Black/dark colour

Thinly bedded/laminated/fissile
(iii) Graptolite/monograptus type/single stipe type/specific named Silurian trilobite
(ii) Denser/heavier sand/greywacke/light coloured layer pushing downlighter/lower density clay/into darker coloured/softer/shale layer/mud injectedup as flame structure
(iii) Calcite will react with dilute HCl and quartz will not Calcite has hardness 3 so can be scratched by a copper coin while quartz is harder (7) scratches glass
Calcite has cleavage/quartz has none
Quartz has conchoidal fracture calcite does not
Quartz has hexagonal crystals calcite has rhombs
If 2 correct statements but no comparison $=1$
(c) (i) Flute casts/sole structures
(ii) Current scouring out hollows
Sediment infilling the hollow
Diagram/s showing deep to shallow hollow in direction of current or U shape narrower part of flute upcurrent

direction drawn correctly
Cannot get full marks without a diagram
Current ecf
(d) Deep sea/abyssal plain/turbidity currents/foot of continental slope
QuestionExpected answers2 (a) Symmetrical syncline/synform1
Axis/axial plane trace trends SW to NE/limbs dipping SE and NW 1
(b) Shale and sandstone beds laid down
Beds folded
Beds faulted by vertical faults allow normal or reverseGranite (batholith) intruded / causes thermal metamorphism
Porphyry dykes along faults
Erosion and limestone laid down unconformably
Tilting 10° to NE
Dolerite sill/concordant intrudes limestone (could be before tilting)
Erosion and unconformity and grit laid downGrit horizontalAny 8
If reverse order or list max 4
QWC1
(c) (i) Dolerite is basic/dark colour/equigranular/mafic minerals porphyry is acid/light colour/porphyritic/quartz1
(ii) Similarity is same composition/both acid/both felsic/mineral content same/both contain quartz/both light coloured/both leucratic 1
Difference granite coarse ($>5 \mathrm{~mm}$) (plutonic) and porphyry medium (1- 5 mm) crystals (hypabyssal) 1
(iii) Spotted rock/slate - fine grained, spots of iron or biotite Andalusite rock/slate - porphyroblasts of andalusite Hornfels - equigranular/granoblastic/medium/coarse crystals/hard crystalline Any 2 max 1 for list of names

QWC

1 mark The candidate is able to communicate knowledge and ideas adequately, specialist terms are used appropriately and spelling, punctuation and grammar are generally accurate with few errors.
0 marks There are severe shortcomings in the organisation and presentation of the answer, leading to a failure to communicate knowledge and ideas. There are significant errors in the use of language, spelling, punctuation and grammar which makes the candidate's meaning uncertain.

QuestionExpected answers

Normal fault
Fault breccia
Fault plane/upthrow/downthrow
Mineral veins/tension gashes
Laminations/thin bedding/bedding planes joints

Dip of fault at $45^{\circ}(+/-5)$
throw measured at $30 \mathrm{~cm}(+/-5)$ measured bed thickness
max 2 for measurements
1

label lines must connect to feature
QuestionExpected answers Marks
4(a) (i) F is coral 1
(ii) E/brachiopod 1
(iii) D is involute 1
(b) Marine environment as all fossils live in the sea Low energy as ammonites are delicate and these are whole coral / brachiopod sessile/live on sea floor ammonites die and sink to the sea floor ammonites are nektonic/swimming in the sea water depth likely to be continental shelf as brachiopods are fixed water depth likely to be continental shelf as corals prefer shallow water cannot be a life assemblage as they live in different environments is a death assemblage as fossils are brought together after death good preservation means low energy
Any 5
reasoned answer making case for derived fossil =1
QWC

1
Total 9
QWC
1 mark The candidate is able to communicate knowledge and ideas adequately, specialist terms are used appropriately and spelling, punctuation and grammar are generally accurate with few errors.
0 marks There are severe shortcomings in the organisation and presentation of the answer, leading to a failure to communicate knowledge and ideas. There are significant errors in the use of language, spelling, punctuation and grammar which makes the candidate's meaning uncertain.
QuestionExpected answers Marks
5(a) Lithostratigraphic/lithological correlation 1
The sequence/pattern of beds/rock types are matched up 1
(b) (i) Leakage could occur along the fault lineMovement could occur along the faultThe fluvial sand and gravel or sandstone if uncemented would allowleakageShale has a low compressive strength/weak foundations unconsolidatedsand and gravel so weak foundationLandslides due to steep slope collapsing/due to inwards dipAny 3
(ii) Boreholes are metres apart may miss feature eg fault/geophysical survey gives continuous data better data coverage 1
(c) G basalt 1
H quartzite (meta or ortho) 1
I schist 1
(d) (i) Imbricate structure/imbrication 1
(ii) Pebbles are aligned by strong current/tops point downstream Long axes parallel to direction of current (possible arrow on diagram)Moved by traction/bed load for transportationany 2
(e) Crystalline limestone/granite/other igneous rock/well cemented grit/sandstone/quartzite 1
High compressive stress so very strong/resistant to weathering so strong/massive so strong/impermeable so no leakage 1
Total 14

Advanced GCE (Subject) (Aggregation Code(s))
 January 2007 Assessment Series

Unit Threshold Marks

Unit		Maximum Mark	\mathbf{a}	\mathbf{b}	\mathbf{c}	\mathbf{d}	\mathbf{e}	\mathbf{u}
$\mathbf{2 8 3 1}$	Raw	60	44	39	34	29	25	0
	UMS	90	72	63	54	45	36	0
$\mathbf{2 8 3 2}$	Raw	60	47	42	37	32	28	0
	UMS	90	72	63	54	45	36	0
$\mathbf{2 8 3 3}$	Raw	120	92	81	70	59	49	0
	UMS	120	96	84	72	60	48	0
$\mathbf{2 8 3 4}$	Raw	90	66	58	50	43	36	0
	UMS	90	72	63	54	45	36	0
$\mathbf{2 8 3 5}$	Raw	90	55	48	41	34	27	0
	UMS	90	72	63	54	45	36	0
$\mathbf{2 8 3 6}$	Raw	120	89	79	69	59	50	0
	UMS	120	96	84	72	60	48	0

Specification Aggregation Results

Overall threshold marks in UMS (i.e. after conversion of raw marks to uniform marks)

	Maximum Mark	A	B	C	D	E	U
$\mathbf{3 8 8 4}$	300	240	210	180	150	120	0
$\mathbf{7 8 8 4}$	600	480	420	360	300	240	0

The cumulative percentage of candidates awarded each grade was as follows:

	A	B	C	D	E	U	Total Number of Candidates
$\mathbf{3 8 8 4}$	17.9	37.9	59.1	77.8	90.3	100.0	1247
$\mathbf{7 8 8 4}$	24.6	50.0	70.0	89.2	97.2	100.0	856

2103 candidates aggregated this series
For a description of how UMS marks are calculated see; http://www.ocr.org.uk/exam system/understand ums.html

Statistics are correct at the time of publication

OCR (Oxford Cambridge and RSA Examinations)

1 Hills Road

Cambridge
CB1 2EU
OCR Customer Contact Centre
(General Qualifications)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

