Geology

Advanced GCE A2 7884

Mark Schemes for the Units

January 2007

OCR (Oxford, Cambridge and RSA Examinations) is a unitary awarding body, established by the University of Cambridge Local Examinations Syndicate and the RSA Examinations Board in January 1998. OCR provides a full range of GCSE, A level, GNVQ, Key Skills and other qualifications for schools and colleges in the United Kingdom, including those previously provided by MEG and OCEAC. It is also responsible for developing new syllabuses to meet national requirements and the needs of students and teachers.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2007
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annersley
NOTTINGHAM
NG15 0DL
Telephone: 08708706622
Facsimile: 08708706621
E-mail: publications@ocr.org.uk

CONTENTS

Advanced GCE Geology (7884)
 Advanced Subsidiary GCE Geology (3884)

MARK SCHEMES FOR THE UNITS

Unit Content Page2831
Global Tectonics and Global Structures 1
2832 The Rock Cycle - Processes and Products 9
2834 Palaeontology 15
Grade Thresholds 24

Mark Scheme 2831
 January 2007

Abbreviations, annotations and conventions used in the Mark Scheme	$\begin{aligned} & \hline \text { I } \\ & \text {; } \\ & \text { NOT } \\ & \text { () } \\ & \overline{\text { ecf }} \\ & \text { AW } \\ & \text { ora } \\ & \hline \end{aligned}$	```= alternative and acceptable answers for the same marking point = separates marking points \(=\) answers which are not worthy of credit = words which are not essential to gain credit = (underlining) key words which must be used to gain credit = error carried forward = alternative wording = or reverse argument```

Abbreviations,	$!$	$=$ alternative and acceptable answers for the same marking point
annotations and		
conventions	= separates marking points	
used in the	NOT $=$ answers which are not worthy of credit	
Mark Scheme	= words which are not essential to gain credit	ecf e (underlining) key words which must be used to gain credit error carried forward
	AW $=$ alternative wording	
ora	$=$ or reverse argument	

1 (e) (i)

1 mark for each correct label. No labels max 1
1(e) (ii) A horizontal line on a (planar) surface/line 90° to the dip
1 (e) (iii) The maximum angle of inclination on a (planar) surface/line 1 at right angle to strike

Abbreviations, annotations and conventions used in the Mark Scheme	1 NOT () $\overline{\text { ecf }}$ AW ora	= alternative and acceptable answers for the same marking point = separates marking points $=$ answers which are not worthy of credit = words which are not essential to gain credit $=$ (underlining) key words which must be used to gain credit = error carried forward = alternative wording = or reverse argument

Question	Expected Answers				Marks
2 (a) (i)	Stress/pressure/energy builds up				
	Energy is stored/ground strained/ground deforms elastically/plastically				
	Rock cannot take the strain/stress and fractures/Fracture occurs to produce a fault/stress exceeds max strength of rock/elastic limit and fractures/faults/brittle deformation				
	Stress/pressure/energy is released forming earthquake/Elastic rebound				Any 3
2 (a) (ii)	Seismometer/seismograph				1
2 (a) (iii)	seismogram				1
2 (b) (i)	Amplitude of the seismic waves				1
	Distance from focus/epicentre/distance travelled/lag time				1
2 (b) (ii)	Richter scale				1
2 (b) (iii)	Based on observations of damage/effects caused (allow alternative wording)/uses the Mercalli scale				1
2(b) (iv)	Solid or unconsolidated ground/nature of the ground/rock type/saturated v unsaturated/ground stability Type of the building construction/strength of building/depth of foundation/earthquake proofing				1
					1
2 (c) (i)	Point where the fault actually occurs/point where seismic waves originate/energy released/point below surface where earthquake takes place				1
2(c) (ii)	feature	shallow foci only	shallow to deep foci	aseismic	
	continental shields			\checkmark	
	subduction zones		\checkmark		
	Mid Ocean Ridges	\checkmark			
	ocean basins			\checkmark	
	1 mark for each correct answer				4

Abbreviations, annotations and conventions used in the Mark Scheme	$\begin{array}{\|l} \hline l \\ \text {; } \\ \text { NOT } \\ () \\ \hline \text { ecf } \\ \text { AW } \\ \text { ora } \\ \hline \end{array}$	```= alternative and acceptable answers for the same marking point = separates marking points = answers which are not worthy of credit = words which are not essential to gain credit = (underlining) key words which must be used to gain credit = error carried forward = alternative wording = or reverse argument```

Question
3(a) (i)
Expected Answers

Location	Average age of the rocks/Ma	Distance from Hawaii (Km)
Hawaii	0	0
Maui	1	140
Kauai	5	$470-510$
Necker	10	$1050-1110$
Laysan	20	$1860-1940$
Midway	28	$2530-2630$

3 - 4 correct $=2$
$1-2$ correct $=1$
Marks
Leorul
ecf
axes $=1$
all points correct = 1
line of best fit (straight line) correct $=1$
3(a) (iii) $9.2 \mathrm{~cm} / \mathrm{year}+/-0.2 \mathrm{~cm} /$ year ecf
working shown
if answer incorrect but correct method = 1
3(b) (i) Area on the surface above a mantle/magma plume
Intraplate (alternative wording)
Hot spot stays in same geographical location/fixed point

Abbreviations, annotations and conventions used in the Mark Scheme	$\begin{array}{\|l} \hline l \\ \text {; } \\ \text { NOT } \\ (\text {) } \\ \overline{\text { ecf }} \\ \text { AW } \\ \text { ora } \\ \hline \end{array}$	= alternative and acceptable answers for the same marking point = separates marking points $=$ answers which are not worthy of credit $=$ words which are not essential to gain credit = (underlining) key words which must be used to gain credit = error carried forward = alternative wording $=$ or reverse argument

3(b) (ii) Hot spot stays in the same geographical location but the plate moves Volcanoes form (islands)
Leaves a trail of increasingly old volcanic islands/Direction of plate movement is in direction of young to old islands/volcanoes become extinct and new ones form Credit diagram

Any 2
3 (c) (i)

2 correct labels $=1$
$3-4$ correct labels $=2$
Diagram (must have at least 1 appropriate symbol) $=1$
3 (c) (ii) Magnetic reversals
Igneous rocks are magnetised at the MOR/constructive plate boundary
Sea floor spreads equally in each direction/symmetrical
Magnetic minerals/iron aligns/fixed below Curie point

Abbreviations, annotations and conventions used in the Mark Scheme	$\begin{aligned} & \hline l \\ & \text {; } \\ & \text { NOT } \\ & (\text {) } \\ & \overline{\text { ecf }} \\ & \text { AW } \\ & \text { ora } \\ & \hline \end{aligned}$	

Question Expected Answers Marks4Joint is a fracture in a rock with no relative movement1
Tectonic joints
Labelled accurate diagram 1
Fractures due to extension/extension around a fold hinge 1
Cross-joints $\left(90^{\circ}\right)$ to fold axis/shear at $\left(45^{\circ}\right)$ to fold axis/oblique joints 1
Occur in competent rocks/appropriate rock type (limestone/sandstone) 1
Cooling joints
Labelled accurate diagram 1
Caused by contraction (inwards) of magma/lava as it cools 1
Forms hexagons/polygons 1
90° to cooling surface 1
Unloading joints/pressure release
Labelled accurate diagram 1
Occur as erosion removes rocks/rocks uplifted 1
Rock expands/dilates 1
Joints parallel to the erosion surface 1
Angular unconformity
Accurate diagram$\max 2$Beds above and below the unconformity dipping at different angles1Unconformity represents a time gap1
1
Explanation of development $\max 3$
Max 6 if no diagrams
Total: 8

Abbreviations, annotations and conventions used in the Mark Scheme	I NOT () $\overline{\text { ecf }}$ AW ora	```= alternative and acceptable answers for the same marking poin = separates marking points = answers which are not worthy of credit = words which are not essential to gain credit = (underlining) key words which must be used to gain credit = error carried forward = alternative wording = or reverse argument```

Quality of Written Communication

2 marks
(technical terms) Answers are structured clearly and logically, so that the candidate communicates effectively, uses a wide range of specialist terms with precision and spelling, punctuation and grammar are accurate.

1 mark (organisation) There are shortcomings in the structure of the answer, however, the candidate is able to communicate knowledge and ideas adequately, a limited range of specialist terms are used appropriately and spelling, punctuation and grammar are generally accurate with few errors.

0 marks There are severe shortcomings in the organisation and presentation of the answer, leading to a failure to communicate knowledge and ideas. There are significant errors in the use of language, spelling, punctuation and grammar, which makes the candidate's meaning uncertain.
[quality of written communication max 2]
Total: 10

Mark Scheme 2832 January 2007

| Abbreviations, | l | $=$ alternative and acceptable answers for the marking point |
| :--- | :--- | :--- | :--- |
| annotations and | $;$ | $=$ separates marking points |
| conventions used in the | NOT $=$ answers which are not worthy of credit | |
| Mark Scheme | () | $=$ words which are not essential to gain credit |
| | $\overline{\text { ecf }}=$ (underlining) key words which must be used to gain credit | |
| | AW $=$ error carried forward | |
| | ora $=$ alternative wording | |
| | | or reverse argument |

Question

Expected answers

2 (a) (i)

phi	mass $\%$	cumulative
-4	0	0
-3	6	6
-2	12	18
-1	16	34
0	30	64
1	18	82
2	9	91
3	6	97
4	3	100

correct completion of cumulative mass
all points plotted correctly/ecf if calculation wrong and plotted those points joined with a smooth 's' shaped curve1
(ii) wind blown/aeolian/wind transported/because well sorted/ dune(any named type)/sand sheet/sand drift; on the lee side/downwind/sheltered area/where wind velocity reduced
(iii) water transport/stream/river channel/because poorly sorted/ rapid deposition/channel that dried up/flash flood/occasional flow/wadi/box canyon/alluvial fan.
(b)(i) calcite in outer zone, gypsum in middle zone and halite in centre/ only gives one correct location.
(ii) outer (calcite) zone shaded
(c)(i) chemical weathering/carbonation/solution/hydrolysis
(ii) solution
(iii) clay/<0.0039mm/silt/0.0039-0.0625mm/fine sediment/mud/windblown loess.
any 1
(d) diagram to show desiccation cracks;
as lake dries up sediment exposed to the atmosphere/surface loses water due to evaporation/surface dries up/contraction of surface causes polygonal cracks/in section cracks narrow downwards/sand infills cracks. diagram marked as text accept discussion of salt pseudomorphs.

| Abbreviations, | $/$ | $=$ alternative and acceptable answers for the marking point |
| :--- | :--- | :--- | :--- |
| annotations and | $;$ | $=$ separates marking points |
| conventions used in the | NOT | $=$ answers which are not worthy of credit |
| Mark Scheme | () | $=$ words which are not essential to gain credit |
| | $\overline{\text { ecf }}=$ (underlining) key words which must be used to gain credit | |
| | AW | $=$ error carried forward |
| | ora $=$ alternative wording | |
| | | or reverse argument |

Question Expected answers Marks
(a) (i)lava/lava flow/named lava/pahoehoe/pyroclastic flow/ignimbrite1
(ii) crater/vent 1
(iii) solid particle/fragment/bomb/lapilli/ash; 1
blasted/ejected/erupted from a volcano/from volcanic explosion 1
(iv) bombs/blocks/grain size coarser/larger/bigger near to X ; 1
lapilli/finer/smaller/ash/tuff/finest nearer to Y 1
ALT larger at X than at Y $\max 1$
(v) larger (bomb, block, agglomerate) pyroclasts fall nearest crater due to their greater mass
intermediate size (lapilli) blasted further due to lower mass smallest (ash, tuff) carried by escaping gases/transported by wind so travel further
(b) volcano is supported by magma in chamber beneath/ violent eruption/magma level in the chamber drops/ magma chamber not full/partly empty/there is a cavity/void/space/ unsupported volcano collapses into void left by magma cone/top/falls into space below.
(c)(i) dated by radiometric methods/historic records/word of mouth/ time interval between events can be deduced/extrapolation/estimate of time before next event possible

```
any 2
```

(ii) detected by surveying equipment/levels/tiltmeters/aerial photographs/ satellites/lasers and computers/ magma rises towards surface/rises due to lower density/ ground level affected by rising magma/indicates eruption imminent
(iii) detected using seismographs/seismometers/many small scale earthquakes <3 Richter/
magma rising/moving up/in pipe/vent the liquid vibrates/ harmonic tremor/eruption about to occur/prior to eruption

Abbreviations,	l	$=$	alternative and acceptable answers for the marking point
annotations and			
conventions used in the	NOT $=$	separates marking points	answers which are not worthy of credit
Mark Scheme	()	$=$	words which are not essential to gain credit
	$\overline{\text { ecf }}=$	(underlining) key words which must be used to gain credit	
	AW	error carried forward	
	ora	alternative wording	
ora	or reverse argument		

Question Expected answers Marks4
high temperature intrusions produce large crystals in surrounding metamorphic rocks/recrystallisation 1
country rocks near to contact with igneous rocks have coarser/larger crystal grain size 1
minor intrusions/dykes/sills have narrow zones of metamorphic rocks/baked zones/bleached zones adjacent to them 1
large intrusions may metamorphose several km of surrounding/country rock/metamorphic aureole 1
different intensities of metamorphism result in a different metamorphic grade/different index minerals 1
shaleshales showing first signs of alteration become spotted1
minerals in the spots include chlorite, mica, quartz, hematite 1
nearer to the intrusion andalusite/chiastolite form/porphyroblastic 1
new minerals include biotite/andalusite/cordierite 1
next to the intrusion hornfels forms 1
conchoidal fracture in hornfels/medium to fine grained hornfels/granoblastic texture 1
limestone
limestone recrystallizes to form marble/marble has sugary/saccharoidal texture 1
crystals are interlocking 1
impurities in limestones metamorphose to form new minerals 1
fossils may be destroyed 1
fossils may be visible as 'ghosts' 1
diagrams marked as text 1
clear labelled diagram 1
If only shale or only limestone considered max 78

Abbreviations,	I	$=$	alternative and acceptable answers for the marking point
annotations and	$;$	$=$	separates marking points
conventions used in the	NOT	$=$	answers which are not worthy of credit
Mark Scheme	()	$=$	words which are not essential to gain credit
	$\overline{\text { ecf }}=$	(underlining) key words which must be used to gain credit	
	AW	error carried forward	
	ora	alternative wording	
	or reverse argument		

2 marks | Answers are structured clearly and logically, so that the candidate communicates |
| :--- |
| effectively, uses a wide range of specialist terms with precision and spelling, punctuation |
| and grammar are accurate. |

1 mark | There are shortcomings in the structure of the answer, however, the candidate is able to |
| :--- |
| communicate knowledge and ideas adequately, a limited range of specialist terms are |
| used appropriately and spelling, punctuation and grammar are generally accurate with |
| few errors. |
| There are severe shortcomings in the organisation and presentation of the answer, |
| leading to a failure to communicate knowledge and ideas. There are significant errors in |
| the use of language, spelling, punctuation and grammar which makes the candidate's |
| meaning uncertain. |

quality of written communication
Question total

Mark Scheme 2834 January 2007

Abbreviations, annotations and conventions used in the Mark Scheme	$\begin{aligned} & \hline! \\ & j \\ & \text { NOT } \\ & () \\ & \overline{\text { ecf }} \\ & \text { AW } \\ & \text { ora } \\ & \text { wwr } \\ & \text { bod } \end{aligned}$	```= alternative and acceptable answers for the marking point separates marking points answers which are not worthy of credit words which are not essential to gain credit (underlining) key words which must be used to gain credit error carried forward alternative wording or reverse argument wrong way round benefit of doubt essential detail missing```

Question Expected answers Marks
1 (a) (i) $\mathrm{A}=$ Gastropod/Gastropoda; 1
B = Crinoid/Echinoderm; 1
C = Bivalve; 1
D = Coral/Cnidaria/Anthozoa/Rugose/Scleractinian 1 Do not accept Tabulate;
E = Irregular echinoid 1
(ii) recognisable diagram; 1
two relevant labels from apex, apical angle, spire, whorl, growth lines,siphonal canal, rib, suture, inner lip, outer lip, aperture, body chamber,columella, sinistral or dextral coilingany 2

$$
\text { ecf from (i) = } 2 \text { max }
$$

(iii) Similarities
both are Echinoderms (do not accept if Echinoderm named for (a) (i)
B)/composed of plates/calcite skeletons/tests/endoskeleton/have cilia generating currents/pore pairs/tube feet/mouth and anus/water vascular system/
accept any correct named morphological feature they both have any 1
Differences
B has arms (brachia), E does not/E has a plastron, B does not/B has a stem/roots/holdfast, E does not/E has spines, B does not/B has radial symmetry, E has bilateral symmetry/ accept any correct named morphological feature that one has and the other doesn't
must compare B and E
(iv) $\quad \begin{array}{ll}\mathrm{B}=\text { sessile } & 1 \\ \mathrm{C}=\text { burrower } & 1\end{array}$
C = burrower
D = sessile
$\mathrm{E}=$ burrower/vagrant
(ii) erosion/change of environment/change of sea level/isostatic changes/eustatic changes/environmental factors affect growth/tectonic movement/subsidence/requires rate of growth to equal rate of subsidence/growth is limited by depth of wave base
Question Expected answers Marks
2 (a) (i) scleroprotein/protein/carbon 1
(ii) planktonic/pelagic/(possibly) nektonic (may use cilia to swim); lived as colony; filter feeders; some attached to external float in water column (eg seaweed); may have had own floatation device/may have been fat filled/may have adjusted buoyancy by secreting oil and gas in tissues; may have been able to move downwards in spiral/corkscrew motion
(iii) rapid evolution/short (stratigraphic) time range (for each genus)/lots of different forms throughout Ordovician and Silurian; easy to identify/easily identifiable morphological changes; geographically widespread as planktonic/pelagic/nektonic; abundant so more likely to be preserved/more likely to be found; found in deep water/not facies dependant so more likely to be preserved/more likely to be found;
resistant to alteration so more likely to be preserved any 3
list of $2=\max 1$
list of $3=\max 2$
(iv) goniatites/trilobites/corals
do not accept scleractinian coral
(b) (i) recognisable drawing of typical Ordovician type such as Tetragraptus, Didymograptus, Dicellograptus, or Dicranograptus;
correctly named Ordovician genus for diagram/ any three correct labels from rhabdosome/sicula/virgella/nema/common canal/theca/aperture/stipe/attitude of stipes correctly named
if Monograptus drawn max 2 for labelsany 3
(ii) had fewer stipes;
change from pendant to scandent;
thecal variation/more complex thecae/change to isolated thecae; change from uniserial to biserial (back to uniserial)
(c) (i) eroded out of original rock;
redeposited in a younger rock 1
(ii) graptolites are fragile/break easily on death; may be scavenged; often fossilised by carbonisation; may be eroded/transported and be destroyed; burial or metamorphism destroys graptolite
Question Expected answers Marks
3 (a)(i) Cephalopod/Cephalopoda 1
(ii) 1 = protoconch/umbilicus; 1
2 = guard; 1
3 = ribs/ornament/growth lines/accept septa 1
4 = suture/lobe 1
(iii) adjusting buoyancy allows vertical movement;
chambers filled with gas/fluid/water (for buoyancy)/gas/fluid/water levelsin chambers adjusted via siphuncle;
jet propulsion/backwards movement/squirting of water;
use of funnel/hyponome;
swimming/walking using tentacles;heteromorphs adapted for bottom dwellingany 3
(b) $\quad \mathrm{J}=$ nautiloid/goniatite; L = ammoniterecognisable internal drawing of J ;recognisable internal drawing of L ;septal necks retrosiphonate/pointing to protoconch in J;septal necks prosiphonate/pointing to body chamber/aperture in L;siphuncle central in J and eccentric/near to venter in L;both J and L have chambers/septa/septal necks/siphuncleany 4diagrams/descriptions of simple suture line in J and complex suture linein $L=\max 1$
labelled diagrams of correct internal morphological features $=\max 1$
(c) (i) $\mathrm{N}=$ bivalve
$\mathrm{O}=$ ammonite
$\mathrm{P}=$ brachiopod
$\mathrm{Q}=$ trilobite

$$
4 \text { correct }=3 \text { marks, } 3 \text { correct }=2 \text { marks, } 2 \text { correct }=1 \text { mark } \max 3
$$

Question Expected answers Marks
4(a)(i) 1 solid line joining from top to top and 1 solid line joining from bottom to 1bottom of one identical fossil horizon/accept 2 solid lines joining identical fossil horizons(lines may be from borehole to borehole or from index species to indexspecies)do not accept less than or more than 2 solid lines
(ii) biostratigraphy is correlation using (zone) fossils;
correlation is done by first appearance/last appearance/range ofindividual fossils;identical fossils should be found in rocks of the same age;there are identical rootlets/gastropods in the two boreholes so can beused;there is more than one species of ammonite so not a good choice;only one borehole contains brachiopods/bivalves so not a good choice;fossils may inhabit different environments/may be found in different rocksof the same ageany 2
(iii) 2 dashed lines joining top and bottom of ash band/ 1accept 1 dashed line joining ash band, ignore other dashed linesdo not accept more than 2 dashed lines
(iv) chronostratigraphy is correlation by an event; gives absolute age/age in millions of years/rocks are datable/contain minerals that can be used for radiometric dating; ash horizons are suitable/ash fall is an instantaneous/short-lived event; ash coming from one eruption covers a large area; ash from one eruption has the same composition (so can be identified)
(b) (i) a varve is an annual/seasonal lake/(peri-)glacial fringe deposit; formed when water carries sediment;
forms coarser/silt/lighter coloured layers in spring (and summer) (as higher energy);
forms finer/clay/darker coloured/organic/carbon-rich layers during rest of year (as lower energy)
(ii) layers alternate - silt in spring and clay in rest of year/coarser and finer/light and dark (do not accept if given in (b) (i)); each varve/pair of bands represent one year/form annual deposits; varves/pairs of bands can be counted to give age;
can be dated using other methods such as C^{14}; gives an age in years/thousands of years;
individual varves can be recognised by relative thickness
(c) (i) suitable labelled diagram of included fragments (eg xenolith/pebble); 1 included fragments older than the rock surrounding them mark labels as text; no diagram = 1 max
(ii) suitable labelled diagram of cross cutting relationship; 1
cross cutting feature is younger than the feature cut; 1
suitable example explained, eg dyke/fault cross cutting beds; 1
mark labels as text; no diagram = 2 max
5(a) Benthonic trilobite morphology
1 exoskeleton (made of chitin) 1
2 has cephalon, thorax and pygidium 1
3 detailed description of cephalon/pygidium 1
4 has glabella, cheeks and facial suture (for ecdysis) on cephalon 1
5 detailed description of glabella/cheeks/facial suture 1
6 genal angle may extend into a genal spine (for protection/support)7 pairs of jointed limbs on underside of thorax/one pair of limbs per 1segment
8 branched limbs for walking and respiration/walking and gill-bearing 1branch
9 thorax separated into central axis and two pleurae 1
10 many thoracic segments/pleurae/flexible/articulated thorax (for 1enrolment)
11 mouth on underside 1
12 compound eyes/eyes high on cephalon 1
13 for good all round upwards vision 1
14 flattened form/description of morphological adaptation for 1burrowing
15 suitable diagram of benthonic trilobite such as Calymene, 1 Dalmanites
$\max 6$
Changes for planktonic mode of life
16 small size so easily carried by currents 1
17 inflated glabella/gas or fat filled acts as a float/buoyancy aid 1
18 no eyes or small eyes as not needed as not a predator/lived in 1
deeper water
19 few pleurae/thoracic segments as limited ability to move/no need 1
for swimming/walking/enrolment
20 suitable diagram of planktonic trilobite such as Agnostus 1
$\max 5$
Changes for nektonic mode of life
21 small size so easily carried by currents 1
22 inflated glabella/gas or fat filled acts as a float/buoyancy aid 1
23 eyes on stalks/protruding/facing forwards/large eyes so able to see1for hunting/allowed sight above and below the animal/allowedgood all round vision
24 spiky or separated pleurae giving a large surface area (to volume 1
ratio)/aiding buoyancy
25 spines for protection 1
26 suitable diagram of nektonic trilobite such as Deiphon 1
5(b) Low Energy Continental Shelf
1 descriptions of common trace fossils/delicate molluscs/brachiopods/echinoderms/corals/trilobites $\max 3$
list $=1 \max$
2 (shallow water assemblages so) abundant life forms 1
3 mainly thin shelled/less ornamented fauna (as no need to withstand 1
high energy)
4 no special adaptations needed for life on substrate/epifaunal 1
5 abundant life in substrate/infaunal 1
6 many trace fossils 1
7 life in the water column/fall to bottom on 1 death/nektonic/planktonic/pelagic forms (eg ammonite, belemnite)
8 fossils likely to be whole/intact/life assemblage 1
High Energy Continental Shelf
9 descriptions of robust molluscs/brachiopods/echinoderms/corals/trilobites $\max 3$ do not credit descriptions already given in 1 list $=1 \max$
10 near shore deposits may have plant material/named plant 1
11 mainly thick shelled/highly ornamented/robust fauna (so more able 1
to withstand high energy/don't get broken)
12 adaptations to life on the substrate/epifaunal include streamlined 1
shape/attachment
13 (thin shelled) life in the substrate/infaunal for protection 1
14 topographic highs may form reefs/algal mats 1
15 corals indicate warm/shallow/high energy conditions/clear 1
water/normal salinity
16 fossils may be broken/fragmental/death assemblage 1 $\max 5$
Deep Ocean Basin
17 descriptions of pelagic microfossils, graptolites and some trilobites to indicate deeper water environment $\max 3$
list $=1$ max
not much benthonic life/nothing alive on the substrate if anoxic 1
19 limited light penetration/below photic zone 1
20 low energy environment/calm/still water/lack of currents 1
21 pelagic/planktonic/nektonic forms/organisms living in water column 1
fall on death/fallout preserved on sea floor
22 mainly deep marine micro-organisms/oozes/cherts 1
23 above CCD may get calcareous micro- 1
organisms/oozes/foraminifera/Globigerina
24 below CCD only get siliceous micro-organisms/oozes/radiolaria 1
25 death assemblage 1
26 trace fossils give evidence of some dwelling on substrate 1
$\max 5$

2 marks \quad| Answers are structured clearly and logically, so that the candidate communicates |
| :--- |
| effectively, uses a wide range of specialist terms with precision and spelling, |
| punctuation and grammar are accurate. |

1 mark \quad| There are shortcomings in the structure of the answer, however, the candidate is |
| :--- |
| able to communicate knowledge and ideas adequately, a limited range of specialist |
| terms are used appropriately and spelling, punctuation and grammar are generally |
| accurate with few errors. |

0 marks \quad| There are severe shortcomings in the organisation and presentation of the answer, |
| :--- |
| leading to a failure to communicate knowledge and ideas. There are significant |
| errors in the use of language, spelling, punctuation and grammar which makes the |
| candidate's meaning uncertain. |

Quality of written communication
Question total

Unit Threshold Marks

Unit		Maximum Mark	\mathbf{a}	\mathbf{b}	\mathbf{c}	\mathbf{d}	\mathbf{e}	\mathbf{u}
$\mathbf{2 8 3 1}$	Raw	60	44	39	34	29	25	0
	UMS	90	72	63	54	45	36	0
$\mathbf{2 8 3 2}$	Raw	60	45	39	34	29	24	0
	UMS	90	72	63	54	45	36	0
$\mathbf{2 8 3 4}$	Raw	90	68	60	53	46	39	0
	UMS	90	72	63	54	45	36	0

Specification Aggregation Results

Overall threshold marks in UMS (i.e. after conversion of raw marks to uniform marks)

	Maximum Mark	A	B	C	D	E	U
$\mathbf{3 8 8 4}$	300	240	210	180	150	120	0
7884	600	480	420	360	300	240	0

The cumulative percentage of candidates awarded each grade was as follows:

	A	B	C	D	E	\mathbf{U}	Total Number of Candidates
$\mathbf{3 8 8 4}$	0.0	28.6	57.1	78.6	85.7	100	14
$\mathbf{7 8 8 4}$	0.0	50.0	100	100	100	100	4

18 candidates aggregated this series.
For a description of how UMS marks are calculated see:
http://www.ocr.org.uk/exam system/understand ums.html
Statistics are correct at the time of publication.

OCR (Oxford Cambridge and RSA Examinations)
 1 Hills Road
 Cambridge
 CB1 2EU

OCR Customer Contact Centre

(General Qualifications)

Telephone: 01223553998
Facsimile: 01223552627
Email: helpdesk@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

