Geology

Advanced GCE A2 7884

Mark Schemes for the Units

June 2006

OCR (Oxford, Cambridge and RSA Examinations) is a unitary awarding body, established by the University of Cambridge Local Examinations Syndicate and the RSA Examinations Board in January 1998. OCR provides a full range of GCSE, A level, GNVQ, Key Skills and other qualifications for schools and colleges in the United Kingdom, including those previously provided by MEG and OCEAC. It is also responsible for developing new syllabuses to meet national requirements and the needs of students and teachers.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2006
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annersley
NOTTINGHAM
NG15 0DL
Telephone: 08708706622
Facsimile: 08708706621
E-mail: publications@ocr.org.uk

CONTENTS

Advanced GCE Geology (7884)
 Advanced Subsidiary GCE Geology (3884)

MARK SCHEMES FOR THE UNITS

Unit	Content	Page
2831	Global Tectonics and Global Structures	1
2832	The Rock Cycle - Processes and Products	11
2833	Economic and Environmental Geology	21
2834	Palaeontology	29
2835	Petrology	43
2836	Economic and Environmental Geology	55
*	Grade Thresholds	62

Mark Scheme 2831
June 2006

Abbreviations,	$\left.\begin{array}{ll}l & =\text { alternative and acceptable answers for the same marking point } \\ ; & =\text { separates marking points } \\ \text { NOT } & =\text { answers which are not worthy of credit } \\ () & =\text { words which are not essential to gain credit }\end{array}\right]$(underlining) key words which must be used to gain credit ecf $=$ error carried forward AW $=$ alternative wording ora $=$ or reverse argument				
annotations					
and					
conventions					
used in the					
Mark Scheme					

Abbreviations,	I	$=$ alternative and acceptable answers for the same marking point
annotations	$;$	$=$ separates marking points
and	NOT	$=$ answers which are not worthy of credit
conventions	()	$=$ words which are not essential to gain credit
used in the	= (underlining) key words which must be used to gain credit Mark Scheme	ecf $=$ error carried forward
	AW $=$ alternative wording ora = or reverse argument	

Question	Expected Answers	Marks
1 (c)		4 Intermediate stress Min stress
(d) (i) (ii)	DOME dome $=$ as on the diagram ($\min 3$ arrows) basin $=$ as on the diagram (min 3 arrows) dome $=$ in the core basin = on the outside (see diag) need both	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & \text { Total: } 16 \end{aligned}$

Abbreviations	I	$=$ alternative and acceptable answers for the same marking point
annotations	$;$	$=$ separates marking points
and	NOT $=$ answers which are not worthy of credit	
conventions	()	$=$ words which are not essential to gain credit
used in the	= (underlining) key words which must be used to gain credit Mark Scheme	ecf e error carried forward
	AW $=$ alternative wording	
ora	$=$ or reverse argument	

Abbreviations, annotations and conventions used in the Mark Scheme	l $=$ alternative and acceptable answers for the same marking point $;$ $=$ separates marking points NOT $=$ answers which are not worthy of credit () $=$ words which are not essential to gain credit $\overline{\text { ecf }}=$ (underlining) key words which must be used to gain credit AW $=$ alternarrive forward ora $=$ or reverse argument				

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{6}{*}{Question
\begin{tabular}{ll}
3 \& (c)
\end{tabular} (i)} \& \multicolumn{4}{|l|}{Expected Answers} \& Marks \\
\hline \& \& \& \& \& \\
\hline \& \& Age of the oldest rocks \& \begin{tabular}{l}
compositio \\
n
\end{tabular} \& Average thickness \& density \\
\hline \& oceanic \& \begin{tabular}{l}
\[
200 \mathrm{Ma}+/-50
\] \\
Ma \\
Jurassic
\end{tabular} \& Basic/sima/ basalt \& \(10 \mathrm{~km}+/-5 \mathrm{~km}\) \& \(3.0+/-0.1\) \\
\hline \& continental \& \[
\begin{aligned}
\& 4000 \mathrm{Ma} \\
\& +/-500 \mathrm{Ma} \\
\& \text { Precambrian }
\end{aligned}
\] \& Acid/interm ediate/sial/ granite/gra nodiorite \& \[
\begin{aligned}
\& 33 \mathrm{~km}+/-+/-7 \\
\& \mathrm{~km}
\end{aligned}
\] \& \(2.7+/-0.1\) \\
\hline \& \begin{tabular}{l}
Any 1-2 cor \\
Any 3-4 cor \\
Any 5-6 cor \\
Any 7-8 cor \\
ophiolites \\
deep sea drill \\
seismic wave \\
direct observ \\
volcanoes/Ha
\end{tabular} \& \& ust ness/depth to g/submersibl MOR/basaltic \& Moho /shield vas \& 4

any 2

\hline | (d) (i) |
| :--- |
| (ii) | \& | Nazca/Pacific |
| :--- |
| Indian - Austr |
| American/Afri | \& | ibbean plate/Co |
| :--- |
| /(North) Amer Eurasian/Antar | \& | cos/Juan de |
| :--- |
| can/South |
| ic | \& \& | 1 |
| :--- |
| 1 |
| Total: 16 |

\hline
\end{tabular}

Quality of Written Communication

2 marks	Answers are structured clearly and logically, so that the candidate communicates effectively, uses a wide range of specialist terms with precision and spelling, punctuation and grammar are accurate.
1 mark	There are shortcomings in the structure of the answer, however, the candidate is able to communicate knowledge and ideas adequately, a limited range of specialist terms are used appropriately and spelling, punctuation and grammar are generally accurate with few errors.
0 marks	There are severe shortcomings in the organisation and presentation of the answer, leading to a failure to communicate knowledge and ideas. There are significant errors in the use of language, spelling, punctuation and grammar, which makes the candidate's meaning uncertain.
Quality of Written Communication	
Question Total	

Mark Scheme 2832
 June 2006

Question	Expected Answers	Marks	
(a)	(i)	A = lava / lava flows / pyroclastics /any named extrusive igneous rock B = intrusive / intrusions / batholith / dyke / sill / any named intrusive body C = transport / transportation D = sedimentary / sedimentary rocks / any named sedimentary rock	1
(ii)	lithification / burial diagenesis compaction / burial dissolution cementation recrystallization (Credit given for burial once only)	1	
(b)		rocks are poor conductors of heat cooling is slower at depth / ora slower cooling produces coarse crystal grain size / ora	any 2
(c) (i)	Igneous / granite (ii)	lragmental / clastic / grains; medium sand / sand sized grains; well sorted; well rounded / rounded high sphericity	any 2
(iii)	quartz is resistant / more resistant to weathering / insoluble / does not undergo chemical weathering feldspar and mica are more affected by chemical weathering/ more soluble quartz is harder and resists abrasion mica is platy and may have been transported and deposited elsewhere. (ittrition / collisions during transport / angular corners chipped off AW / wind transport /transport over long distance / for a long time abrasion / grains rub together	any 2	

Question	Expected Answers	Marks
$\mathbf{1}$ (a) (v)	Metamorphic / metaquartzite	1

Question	Expected Answers	Marks	
(d)	rainwater containing CO_{2} becomes carbonic acid it reacts with carbonates / limestone to form soluble hydrogen carbonates $\mathrm{CaCO}_{3}+\mathrm{H}^{+}+\mathrm{HCO}_{3}^{-} \rightarrow \mathrm{Ca}^{+}+2 \mathrm{HCO}_{3}^{-}$ Reaction between rocks and carbonic acid	any 2 $\max 1$	
			17

Question	Expected Answers	Marks
4	Differences	
	1. baked zone above and below sill but only below lava flow	1
	2. sills may include xenoliths of overlying rock but lava flows only include underlying rock	1
	3. sills have two chilled margins but lava flows have one	1
	4. lava flows have vesicles or amygdales at the top but sills do not	
	5. phenocrysts have random orientation in sills but show preferred alignment in lava flows.	1
	6. lava flows may have pillow shapes but sills do not	1
	7. sills have medium sized crystals in the middle but lava flows have fine crystals only	
	8. lava flows have reddened/ weathered top	1
		1 $\max 3$
	Explanations	
	1. Sill intruded between country rocks but lava extruded onto surface	1
	2. there are no rocks overlying lava flows when they	1
	are formed	1
	3. sills are cooled by contact with the country rocks at top and base	1
	4. pressures are lower at the surface than at depth allowing gas bubbles to rise to the top of lava flows	1
	5. movement of the lava causes any large elongate crystals to line up in the direction of flow. 6. eruption under water. 7. sills cool more slowly than lava flows / ora	1
		1 $\max 3$
	Diagrams (sill ; lava flow) which illustrate the differences. Diagrams marked as text	2

2 marks Answers are structured clearly and logically, so that the candidate communicates effectively, uses a wide range of specialist terms with precision and spelling, punctuation and grammar are accurate.
1 mark There are shortcomings in the structure of the answer, however, the candidate is able to communicate knowledge and ideas adequately, a limited range of specialist terms are used appropriately and spelling, punctuation and grammar are generally accurate with few errors.
0 marks There are severe shortcomings in the organisation and presentation of the answer, leading to a failure to communicate knowledge and ideas. There are significant errors in the use of language, spelling, punctuation and grammar which makes the candidate's meaning uncertain.
Quality of Written Communication
Max 2
Question Total 10

Mark Scheme 2833 June 2006

Abbreviations, annotations and conventions used in the Mark Scheme	$\begin{array}{\|l} \hline! \\ \text { j } \\ \text { NOT } \\ () \\ \overline{\text { ecf }} \\ \text { AW } \\ \text { ora } \\ \hline \end{array}$	```= alternative and acceptable answers for the same marking point = separates marking points = answers which are not worthy of credit = words which are not essential to gain credit = (underlining) key words which must be used to gain credit = error carried forward = alternative wording = or reverse argument```

Question	Expected Answers	Marks
$\mathbf{1}$ (a)	beds dipping (towards valley/south/railway tracks) / accept beds/strata slope downwards; (strong/competent limestone on top of) weak/incompetent shale; permeable limestone on top of impermeable shale; limestone is jointed; rain water will percolate down through limestone (to shale); slip plane will develop between limestone and shale / along bedding plane do not accept angle of slope	any 2
(b) (i)	(blay / mudstone / shale / tuff / allow poorly consolidated / uncemented rock	any 1
(ii)	water adds weight; water acts as a lubricant / loss of friction / loss of cohesion; water increases the pore fluid pressure / rocks become saturated / waterlogged / absorb water; presence of water causes swelling (of clay minerals) - reduces strength	any 2
(c) \quadunconsolidated sands and gravel / uncemented sandstones are weak / interbedded chalk and shales may flow under pressure - tunnel may collapse; unconsolidated sands and gravel / uncemented sandstones / chalk are porous and permeable / leakage of water down faults - tunnel may flood; presence of faults - planes of weakness / danger of movement causing tunnel to collapse / juxtapose different rock types on either side / leakage of water down faults	1	1
(d)	expensive; rate of tunnelling will be slow; will have to use drilling and blasting techniques (can be dangerous); possibility of engineering problems - overbreak / underbreak	any 1

Abbreviations, annotations and conventions used in the Mark Scheme		```= alternative and acceptable answers for the same marking point = separates marking points \(=\) answers which are not worthy of credit = words which are not essential to gain credit = (underlining) key words which must be used to gain credit = error carried forward = alternative wording = or reverse argument```

Question	Expected Answers		Marks
	(e) ground improvement method	application	
rock bolts	prevent loose blocks falling from a tunnel roof	1	
grouting / rock drains	prevent leakage of water into a tunnel	1	
	gabions / rock bolts		1
	rock drains / gabions	prevent slumping of a slope	1

Abbreviations, annotations and conventions used in the Mark Scheme	$\begin{array}{\|l} \hline l \\ \text {; } \\ \text { NOT } \\ () \\ \overline{\text { ecf }} \\ \text { AW } \\ \text { ora } \\ \hline \end{array}$	= alternative and acceptable answers for the same marking point = separates marking points $=$ answers which are not worthy of credit = words which are not essential to gain credit $=$ (underlining) key words which must be used to gain credit = error carried forward = alternative wording = or reverse argument

Abbreviations, annotations and conventions used in the Mark Scheme	I NOT () $\overline{\text { ecf }}$ AW ora	```= alternative and acceptable answers for the same marking point = separates marking points = answers which are not worthy of credit = words which are not essential to gain credit \(=\) (underlining) key words which must be used to gain credit = error carried forward = alternative wording = or reverse argument```

Question	(c)	(ii)	Expected Answers horizontal line / shading at 20 metres depth (accept between 15-25 metres)
(iii)	gossan capping is left at surface; copper is depleted above the water table / near the surface; copper is taken into solution / dissolved / zone of leaching above water table / near surface; copper is concentrated at / immediately below the water table; copper is re-deposited / precipitated due to change in conditions / from oxidising above to reducing conditions below the water table; copper is concentrated into a smaller volume; unaltered / unweathered / unaffected / original / primary copper ore is at depth	any 3	

Abbreviations, annotations and conventions used in the Mark Scheme	$\begin{array}{\|l} \hline l \\ \text {; } \\ \text { NOT } \\ (\text {) } \\ \overline{\text { ecf }} \\ \text { AW } \\ \text { ora } \\ \hline \end{array}$	= alternative and acceptable answers for the same marking point = separates marking points $=$ answers which are not worthy of credit $=$ words which are not essential to gain credit $=$ (underlining) key words which must be used to gain credit = error carried forward = alternative wording = or reverse argument

Question	Expected Answers	Marks	
(a)	(i)	requires abundant plankton / (free-floating) micro organisms / algae / deposition in marine environment; low energy conditions / rapid burial in fine grained sediment; requires low oxygen / anoxic / anaerobic / reducing conditions on sea floor; role of (anaerobic) bacteria causing partial decay; requires temperatures of 50 to 200C for the plankton to be converted to petroleum; pressure / compression causing conversion of plankton to oil / gas; formation of kerogen / sapropel the petroleum takes time to mature;	
(ii)	pressure - oil migrates in response to pressure from high to low / down pressure gradient; density - oil is less dense than water in pore space so migrates upwards; viscosity of oil / temperature affects viscosity of oil; permeability of rock - requires permeable rock between source rock and reservoir rock to allow migration presence of impermeable rock / cap rock prevents further upwards migration (must describe, not list)	any 3	
(iii)reservoir rock = highly porous and permeable rock rontaining oil / rock capable of storing (and yielding) significant quantities of oil	any 2		
(iv)	cap rock = impermeable rock - above reservoir rock / prevents oil escaping upwards	1	
diagram of fault with permeable / reservoir / suitable named rock on one side and impermeable / cap / suitable named rock on the other; impermeable / cap / suitable named rock shown above reservoir rock; oil (with gas above) drawn horizontally at top of reservoir rock adjacent to the fault (mark labels as text) (no diagram = 0)	1		

Abbreviations, annotations and conventions used in the Mark Scheme	l ! NOT () $\overline{\text { ecf }}$ AW ora	= alternative and acceptable answers for the same marking point = separates marking points $=$ answers which are not worthy of credit = words which are not essential to gain credit $=$ (underlining) key words which must be used to gain credit = error carried forward = alternative wording = or reverse argument

Abbreviations, annotations and conventions used in the Mark Scheme		= alternative and acceptable answers for the same marking point = separates marking points = answers which are not worthy of credit = words which are not essential to gain credit = (underlining) key words which must be used to gain credit = error carried forward = alternative wording = or reverse argument

Question	Expected Answers	Marks
$\mathbf{3}$ (c)	attitude and structures horizontal and strata dipping upstream are stable / strata dipping downstream is unstable (potential for slippage and collapse of dam); lack of faults important - zones of permeability / zones of weakness / old faults may be reactivated / juxtapose different rock types; lack of joints - zones of permeability / weakness; synclines may permit leakage; anticlines may have slippage on limbs / tension joints on crest;	1
other considerations suitable building materials should be close to site (bulk commodity); absence of caves / old underground mine workings; discussion of suitable ground improvement strategies	1	
	1 (mark diagrams as text)	max 1

Mark Scheme 2834
 June 2006

Abbreviations,	l	$=$	alternative and acceptable answers for the marking point
annotations and			
conventions used in			
the Mark Scheme	j	$==$	separates marking points
	()	$=$	answers which are not worthy of credit
	$\overline{\text { ecf }}=$	words which are not essential to gain credit	
	(underlining) key words which must be used to gain credit		
	AW $=$ error carried forward ora $=$ alternative wording		
	or reverse argument		

Question	Expected Answers	Marks
1 (a)(i)	group	
	Coral / Cnidaria / Anthozoa / Rugose / Scleractinian / do not accept Tabulate Corals	
	B Crinoid	
	CEchinoid / Echinoderm do not accept Micraster	
	Graptolite / Hemichordata / Graptolithina / Graptoloid	
(ii) (iii)	1 mark per row recognisable drawing of a regular echinoid suitable labels - test, (calcite) plates, ambulacra (narrower than interambulacra), interambulacra, tubercles, spines, pore pairs, periproct/anus, peristome/mouth, apical system / (madreporite) OR recognisable drawing of an irregular echinoid additional labels - plastron, labrum, anterior grove, fasciole similarity - same phylum / both Echinodermata / composed of plates / calcite test / endoskeleton / water vascular system / 5 fold symmetry / paired pores / tube feet / marine organisms / benthonic / epifaunal / accept any correct named morphological feature they both have	$\max 4$ 1 $\max 3$ or 1 $\max 2$

Abbreviations,	$!$	$=$	alternative and acceptable answers for the marking point
annotations and			
conventions used in			
the Mark Scheme	$;$	$=$	separates marking points
	()	$=$	answers which are not worthy of credit
	Nords which are not essential to gain credit		
	$\overline{\text { ecf }}=$	(underlining) key words which must be used to gain credit	
	AW	error carried forward	
	ora	alternative wording	
	$=$	or reverse argument	

Question	Expected Answers	Marks
	difference - symmetry / mode of life - B sessile vs. C vagrant / B filter feeder vs. C grazer / spines / anus and mouth in different positions / accept any correct named morphological feature that one has and the other doesn't	
(b) allow ecf if wrong group identified any pair	1	
(i)	brachial valve - smaller valve on either view brachidium - internal feature - loop structure on internal view growth line - external feature - on external view	1
(ii)	two arms (brachia) fringed with cilia/tiny hairs / (fluid filled canal) with sticky cilia/tiny hairs / cilia/tiny hairs beat to generate currents / currents carry food / food particles passed along cilia to mouth / filter or suspension feeders do not accept filtering of sediment	1

Abbreviations,	$!$	$=$	alternative and acceptable answers for the marking point
annotations and			
conventions used in			
the Mark Scheme	$;$	$=$	separates marking points
	()	$=$	answers which are not worthy of credit
	Nords which are not essential to gain credit		
	$\overline{\text { ecf }}=$	(underlining) key words which must be used to gain credit	
	AW	error carried forward	
	ora	alternative wording	
	$=$	or reverse argument	

Question	Expected Answers	Marks
2 (a) (i)		
	term description A, B, C, D or E	
	replacement \quad E	
	carbonisation A	
	silicification \quad B	
	recrystallisation C	
	moulds \quad D	
	```one correct = 1 mark two correct = 2 three correct = 3 four or five correct = 4```	max 4
(ii)	anaerobic / anoxic / reducing conditions;   sulphur-fixing / pyrite-making bacteria / hydrogen   sulphide is produced;   low energy;   requires iron-rich, organic sediment / iron-rich water	any 2
(iii)	aragonite unstable;   alters to more stable calcite;   polymorphs of calcium carbonate / polymorphs change; if older than Cainozoic - aragonite has been altered to calcite;   process of recrystallisation	any 2
(b) (i)	fine grained sediment   preserves detail / preserves soft parts / exceptional preservation / preserves trace fossils; clay minerals in sediment are delicate / flexible / don't crush organism;   less damage due to no grain impact of larger sediments;   usually quieter conditions / fewer currents to break up fossils;   less abrasion / attrition / erosion; fine grained sediment has lower permeability - less oxygen / less chance of decay/decomposition; if scavenging occurs preservation potential is less	any 2


Abbreviations,	$!$	$=$	alternative and acceptable answers for the marking point
annotations and			
conventions used in			
the Mark Scheme	NOT $=$	separates marking points	
	()	$=$	answers which are not worthy of credit
	eords which are not essential to gain credit		
	$\overline{\text { ecf }}=$	(underlining) key words which must be used to gain credit	
	AW	error carried forward	
	ora	alternative wording	
	$=$	or reverse argument	



Abbreviations,			
annotations and			
conventions used in			
the Mark Scheme	$!$	$=$	alternative and acceptable answers for the marking point
	NOT	$=$	separates marking points
	()	$=$	answers which are not worthy of credich are not essential to gain credit
	$\overline{\text { ecf }}=$	(underlining) key words which must be used to gain credit	
	AW $=$   arror carried forward		
	ora	$=$	alternative wording
			reverse argument


Question	Expected Answers	Marks
3 (a) (i)		
	genal angle - on either specimen at edge of cephalon; glabella - central area of cephalon on dorsal view; mouth - indicated in central area of anterior end on ventral view; pleuron - shaded or indicated on dorsal or ventral view;	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$
(b) (i)	pair of feathery gills close to edge of axial lobe on underside above walking legs pair of legs / jointed / walking legs on each side of underside if both correctly labelled on one side only $=\max 1$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$


Abbreviations,	$!$	$=$	alternative and acceptable answers for the marking point
annotations and			
conventions used in			
the Mark Scheme	$;$	$=$	separates marking points
	()	$=$	answers which are not worthy of credit
	$\overline{\text { ecf }}=$	words which are not essential to gain credit	
	(underlining) key words which must be used to gain credit		
	AW	error carried forward	
	ora	alternative wording	
	$=$	or reverse argument	



Abbreviations,	$I$	$=$	alternative and acceptable answers for the marking point
annotations and			
conventions used in	$;$	$=$	separates marking points
the Mark Scheme	NOT $=$	answers which are not worthy of credit	
	()	$=$	words which are not essential to gain credit
	$\overline{\text { ecf }}=$	(underlining) key words which must be used to gain credit	
	AW	error carried forward	
ora	$=$	alternative wording	
	or reverse argument		


Question	Expected Answers	Marks
(c)	planktonic   small body / light weight;   for floating in water column   few thoracic segments;   no need for flexibility/enrolment / had few legs - no   need to swim/walk   inflated glabella and or pygidium / fat or gas filled /   separated pleura;   for buoyancy in water column   paired answers - 1 for each morphological adaptation,   1 for explanation	max 2
(d) (i)	Fossil J   resting trace/mark / trilobite stationary / marks from   exoskeleton / gills or legs   Fossil K   walking traces/marks / (double imprint) may be legs   and gills touching sediment / made by movement   (ii) for life and aerobic / oxygenated sea floor;   soft substrate / fine grained sediment to leave marks;   lack of currents / low energy / sediment movement   destroy traces;   wouldn't form if rapid sedimentation;   organic material available for food	any 1 1


Abbreviations,	$!$	$=$	alternative and acceptable answers for the marking point
annotations and			
conventions used in			
the Mark Scheme	$;$	$=$	separates marking points
	()	$=$	answers which are not worthy of credit
	$\overline{\text { ecf }}=$	words which are not essential to gain credit	
	(underlining) key words which must be used to gain credit		
	AW $=$   error carried forward		
	ora	$=$	or revative wording



Abbreviations,	$!$	$=$	alternative and acceptable answers for the marking point
annotations and			
conventions used in			
the Mark Scheme	$;$	$=$	separates marking points
	()	$=$	answers which are not worthy of credit
	Nords which are not essential to gain credit		
	$\overline{\text { ecf }}=$	(underlining) key words which must be used to gain credit	
	AW	error carried forward	
	ora	alternative wording	
	$=$	or reverse argument	


Question	Expected Answers	Marks	
$\mathbf{4}$ (c)	(iv)	large scale volcanic activity (Deccan Traps - India) /   continental flood basalts / huge volumes of magma   erupted over short time scale;   global implications for climate change explained - ash,   dust and sulphur dioxide caused "volcanic winter" / initial   global cooling / longer time scale global warming (due to   erupted $\mathrm{CO}_{2}$ ) / acid rain (due to erupted $\mathrm{SO}_{2}$ ) / volcanism   caused changes in sea water chemistry / volcanic activity   triggered forest fires	1
		OR	1
(increased volcanic activity at mid ocean ridges;	or		
		leading to sea level rises	1


Abbreviations,	$!$	$=$	alternative and acceptable answers for the marking point
annotations and			
conventions used in			
the Mark Scheme	$;$	$=$	separates marking points
	()	$=$	answers which are not worthy of credit
	$\overline{\text { ecf }}=$	words which are not essential to gain credit	
	(underlining) key words which must be used to gain credit		
	AW $=$   error carried forward		
	ora	$=$	or revative wording



Abbreviations,	$I$	$=$	alternative and acceptable answers for the marking point
annotations and			
conventions used in			
the Mark Scheme	$;$	$=$	separates marking points
	()	$=$	answers which are not worthy of credit
	eords which are not essential to gain credit		
	ecf	$=$ (underlining) key words which must be used to gain credit	
	AW $=$   error carried forward		
	ora	$=$	alternative wording
		or reverse argument	


Question	Expected Answers	Marks
5 (b)	Bivalves	
1	Internal - internal diagram of shell (with labels)	1
2	soft tissues (mantle) occupying area between shells / siphons	1
3	siphons extend beyond shells / separate inhalant and exhalent currents	1
4	muscular foot discussed	1
5	pallial line and sinus	1
6	muscle scars / teeth and sockets / ligament identified	1
7	External - external diagram of shell (with labels)	1
8	two valves / hinged valves / left and right valves	1
9	line of symmetry along hinge line / equivalve	1
10	detail of adapted forms with a byssus, e.g. Mytilus	1
11	detail of cemented forms, e.g. Ostrea	1
12	other detail of adaptation such as Pecten or suitable form	1
13	ornament types discussed - ribs and growth lines	1
	Cephalopods	max 7
14	Cephalopods have chambered shells	1
15	chambers connected by a siphuncle	1
16	animal lives in final chamber / soft tissue of animal extends out of shell / has head and tentacles	1
17	gas or minerals in chambers help buoyancy / use of siphuncle to adjust buoyancy	1
18	funnel / siphon used for jet propulsion	1
19	thin shells of Cephalopods do not allow life in high energy environments	1
	Nautiloids	
20	Internal - internal diagram of shell (with labels)	1
21	position of siphuncle central	1
22	shell divided by straight chambers / suture straight	1
23	External - external diagram of Nautilus or orthocone nautiloid (with labels)	1
24	poorly ornamented shell / growth lines only	1


Abbreviations,	$I$	$=$	alternative and acceptable answers for the marking point
annotations and			
conventions used in			
the Mark Scheme	$;$	$=$	separates marking points
	()	$=$	answers which are not worthy of credit
	$\overline{\text { ecf }}=$	words which are not essential to gain credit	
	(underlining) key words which must be used to gain credit		
	AW	error carried forward	
	ora	alternative wording	
	$=$	or reverse argument	



Abbreviations,	$!$	$=$	alternative and acceptable answers for the marking point
annotations and			
conventions used in			
the Mark Scheme	$;$	$=$	separates marking points
	()	$=$	answers which are not worthy of credit
	Nords which are not essential to gain credit		
	$\overline{\text { ecf }}=$	(underlining) key words which must be used to gain credit	
	AW	error carried forward	
	ora	alternative wording	
	$=$	or reverse argument	

2 marks | Answers are structured clearly and logically, so that the candidate communicates |
| :--- |
| effectively, uses a wide range of specialist terms with precision and spelling, |
| punctuation and grammar are accurate. |

1 mark $\quad$| There are shortcomings in the structure of the answer, however, the candidate is |
| :--- |
| able to communicate knowledge and ideas adequately, a limited range of specialist |
| terms are used appropriately and spelling, punctuation and grammar are generally |
| accurate with few errors. |

0 marks | There are severe shortcomings in the organisation and presentation of the answer, |
| :--- |
| leading to a failure to communicate knowledge and ideas. There are significant |
| errors in the use of language, spelling, punctuation and grammar which makes the |
| candidate's meaning uncertain. |

Quality of Written Communication Max 2

Mark Scheme 2835
June 2006

Abbreviations,	$I$	$=$	alternative and acceptable answers for the marking point
annotations and			
conventions used in			
the Mark Scheme	$;$	$=$	separates marking points
	NOT	$=$	answers which are not worthy of credit
	()	words which are not essential to gain credit	
	$\overline{\text { ecf }}=$	(underlining) key words which must be used to gain credit	
	AW	error carried forward	
	ora	alternative wording	
		or reverse argument	


Question	Expected Answers	Marks
1 (a) (i)	A = Basic or any named rock   $B=$ Acid or any named rock   C = Intermediate or any named rock   D = Ultrabasic or any named rock	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$
(ii)	\% of silicon increases from $\mathrm{U} / \mathrm{B}$ to $\mathrm{A} /$ \% of sodium increases form U/B to $A$	Any 1
	$\%$ of iron decreases from $U / B$ to $A /$   \% of magnesium decreases from $U / B$ to $A$	Any 1
	In acid and intermediate rocks ( $B$ and $C$ ), the silicon and sodium percentages are greater than in basic and Ultrabasic rocks (A and D)	1
	In the basic and Ultrabasic rocks ( $A$ and $D$ ) the magnesium and silicon percentages are greater than in acid and intermediate rocks (B and C)	1
	Higher \% of silicon and sodium, lower the \% of iron and magnesium	1
	Higher \% of iron and magnesium, lower the \% of silicon and sodium	1
	NO LISTS MUST BE A COMPARISON BETWEEN SILICON AND SODIUM AND IRON AND MAGNESIUM	
(iii)	$\mathrm{SiO}_{2}$ is measured as total \% in rock $\mathrm{SiO}_{2}$ can be combined with other elements to form silicate minerals / all $\mathrm{SiO}_{2}$ is used to form silicate minerals Free quartz only forms as a result of an excess in silica	Any 2
(b) (i)	Average size of ALL crystals within the rock	
(ii)	$3 \mathrm{~mm}+/-1 \mathrm{~mm}$	1


Abbreviations,	$!$	$=$	alternative and acceptable answers for the marking point
annotations and	$;$	$=$	separates marking points
conventions used in	NOT	$=$ answers which are not worthy of credit	
the Mark Scheme	()	$=$ words which are not essential to gain credit	
	$\overline{\text { ecf }}=$ (underlining) key words which must be used to gain credit		
	AW	error carried forward	
	ora	alternative wording	



Abbreviations, annotations and conventions used in the Mark Scheme	NOT   ()   $\overline{\text { ecf }}$   AW   ora	```alternative and acceptable answers for the marking point separates marking points answers which are not worthy of credit words which are not essential to gain credit (underlining) key words which must be used to gain credit error carried forward alternative wording or reverse argument```



Abbreviations, annotations and conventions used in the Mark Scheme	NOT   ()   $\overline{\text { ecf }}$   AW   ora	```= alternative and acceptable answers for the marking point = separates marking points = answers which are not worthy of credit = words which are not essential to gain credit = (underlining) key words which must be used to gain credit = error carried forward = alternative wording = or reverse argument```


Question	Expected Answers	Marks
3 (a)	Temperature $=$ Higher the temperature greater degree of Change / coarser crystal grain size Longer time temperature is involved the greater change Lower temperature minerals replaced by those stable at higher temperature $=$ Prograde   Higher temperature minerals replaced by those stable at a lower temperature $=$ Retrograde   Minerals plastic allows diffusion of ions Gases lost at higher temperatures Increasing temperature   Higher temperature, higher grade of Metamorphism   New minerals form as a result of increased temperature   Increased temperature original structures/fossils destroyed	Any 2
	Pore Pressure = Pressure exerted by fluids in pore_spaces, / presence of water   Load Pressure = Pressure exerted on a rock at depth due to mass of rock above.   Compressive stress / direct pressure - pressure by tectonic processes / compressive forces acting on rock leading to mineral alignment/ foliation of minerals Higher pressure, higher grade of metamorph	Any 2   1   1
(b) (i)	$\begin{aligned} & \text { Limestone }=\text { Marble } \\ & \text { Sandstone }=(\text { Meta }) \text { quartzite } \end{aligned}$	Any 2
(ii)	Shales are polymineralic / consist of a wide variety of minerals   Clay minerals contain a wide variety of elements New minerals stable under new $T$ and $P$ conditions Fine grain size increases rate of reaction	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$


Abbreviations,	$l$	$=$	alternative and acceptable answers for the marking point
annotations and	$;$	$=$ separates marking points	
conventions used in	NOT	$=$ answers which are not worthy of credit	
the Mark Scheme	()	$=$ words which are not essential to gain credit	
	$\overline{\text { ecf }}=$ (underlining) key words which must be used to gain credit		
	AW $=$ error carried forward		
	ora $=$ alternative wording		


Question	Expected Answers	Marks
3 (b) (iii)	Zone = sequence of metamorphic rocks characterised by the appearance / presence of a characteristic index mineral/ area showing same grade of metamorphism Index Mineral = (first appearance of a new) mineral, used to define a zone/ mineral used grade Isograd = line joining points of equal metamorphic grade/boundary between metamorphic zones	2
(iv)	$2 / 3$ correct isograds $=1$   4 correct isograds $=2$   If points joined	Max 1
	Andalusite is indicative of high temperatures and low pressures / Thermal metamorphism   Kyanite is indicative of high temperatures and high pressures / Regional Metamorphism   Sillimanite is indicative of high temperatures and range of pressures grades of metamorphism   NB allow temperature / pressure comparisons between polymorphs	Any 2
(d) (i)	Calcite $=$ Silica $>\underline{\text { Wollastonite } / \mathrm{CaSiO}_{3}} / /$ Calcium silicate + Carbon dioxide	
(ii)	Loss of carbon dioxide Not a closed system	1


Abbreviations, annotations and conventions used in the Mark Scheme		```= alternative and acceptable answers for the marking point separates marking points answers which are not worthy of credit words which are not essential to gain credit (underlining) key words which must be used to gain credit error carried forward alternative wording or reverse argument```



Abbreviations, annotations and conventions used in the Mark Scheme	NOT   ()   $\overline{\text { ecf }}$   AW   ora	```= alternative and acceptable answers for the marking point = separates marking points = answers which are not worthy of credit = words which are not essential to gain credit = (underlining) key words which must be used to gain credit = error carried forward = alternative wording = or reverse argument```


Question	Expected Answers	Marks
5 (a)	Gravitational settling/ magmatic segregation	1
	Minerals with highest temperature form first	1
	Denser than surrounding liquid therefore sink	1
	Known as cumulus crystals	1
	Form layer rich in this mineral at base	1
	cumulate layer	1
	Remaining liquid depleted in early formed constituents	1
		Max $=4$
	Fractional crystallisation	1
	Minerals form in a distinct order / crystallize in a distinct	1
	order	1
	Known as Bowens Reaction Series	1
	Olivine forms first on discontinuous side	1
	Later minerals become progressively richer in iron	1
	Ca rich plagioclase forms first / becomes richer in Na	1
	Magma becomes more acidic / felsic	1
	Quartz is the last mineral to form	1
	Only forms if magma saturated in $\mathrm{SiO}_{2}$	1
	2 distinct arms, Discontinuous and Continuous	2
	Case studies of Palisade or Skaergaard Max $=2$	
		Max $=8$
	Filter Pressing	1
	Mechanical squeezing of the melt	1
	As a result of earth movements	1
	Magma starts to crystallize with early formed crystals	1
	Melt squeezed, early formed crystals removed	1
	Left with magma depleted in early formed crystals	
	Aplite veins are an example	Max $=4$
	Assimilation / contamination	1
	Magma rises towards surface	1
	Melts (incorporates) some country rock)	1
	Changes composition accordingly	1
	Incomplete assimilation shown by xenoliths	
		Max $=3$


Abbreviations,	$l$	$=$	alternative and acceptable answers for the marking point
annotations and	$;$	$=$ separates marking points	
conventions used in	NOT $=$ answers which are not worthy of credit		
the Mark Scheme	()	$=$ words which are not essential to gain credit	
	$\overline{\text { ecf }}=$ (underlining) key words which must be used to gain credit		
	AW $=$ error carried forward		
	ora $=$ alternative wording		


Question	Expected Answers	Marks
$\mathbf{5}$ (a)	Magma mixing	1
	Process by which 2 magma sources mix	1
	Gives rise to a magma of a different composition	1
	Often leads to composite intrusions	1
	Mark diagrams as text	1 Max $=3$
		Total: $\mathbf{1 2}$


2 marksAnswers are structured clearly and logically, so that the candidate communicates   effectively, uses a wide range of specialist terms with precision and spelling,   punctuation and grammar are accurate.	
0 mark $\quad$There are shortcomings in the structure of the answer, however, the candidate is   able to communicate knowledge and ideas adequately, a limited range of specialist   terms are used appropriately and spelling, punctuation and grammar are generally   accurate with few errors.	
Quality of Written Communication	There are severe shortcomings in the organisation and presentation of the answer,   leading to a failure to communicate knowledge and ideas. There are significant   errors in the use of language, spelling, punctuation and grammar which makes the   candidate's meaning uncertain.
Max 2	


| Abbreviations, | $l$ | $=$ alternative and acceptable answers for the marking point |
| :--- | :--- | :--- | :--- |
| annotations and | $;$ | $=$ separates marking points |
| conventions used in | NOT $=$ answers which are not worthy of credit |  |
| the Mark Scheme | () | $=$ words which are not essential to gain credit |
|  | $\overline{\text { ecf }}=$ (underlining) key words which must be used to gain credit |  |
|  | AW $=$ error carried forward |  |
|  | ora $=$ alternative wording |  |
|  |  | or reverse argument |


Question	Expected Answers	Marks
5 (b)	Products:	
	Oolitic limestone	1
	Spherical grains of aragonite/ calcite / calcium carbonate in cement	1
	Fossiliferous limestone/ bioclastic / shelly / reef	1
	Broken shell fragments	1
	Micritic limestone	1
	Fine grained lime rich mud	1
	Chalk	1
	Skeletal remains of micro-organisms	
	Known as coccoliths	
		Max $=9$
	Processes:	
	Limestones commonly form in specific conditions:	
	Oolitic limestone:	1
	Nucleus	1
	Rolled along shallow beach or sand bank	1
	High energy conditions	1
	Water saturated in calcium carbonate	1
	Calcium carbonate (aragonite) deposited around	1
	nucleus/ concentric layers	1
	evaporation / Precipitation from sea water	1
	Micritic limestone:	1
	Low energy conditions	1
	Calcareous algae, which breaks down when algae die	1
	In lagoon behind sheltered barrier	1
	Food for organisms living in lagoon	1
	Evaporation of sea water	1
	Precipitation of calcium carbonate	1


Abbreviations, annotations and conventions used in the Mark Scheme	NOT   ()   $\overline{\text { ecf }}$   AW   ora		alternative and acceptable answers for the marking point separates marking points   answers which are not worthy of credit   words which are not essential to gain credit   (underlining) key words which must be used to gain credit   error carried forward   alternative wording   or reverse argument


Question	Expected Answers	Marks
$\mathbf{5}$ (b)	Reef / fossiliferous Limestone:   Found on barrier or front of barrier   Either well preserved( barrier) or fragmental (front)  	Due to moderate or high energy conditions   Fossils cemented by calcite in form of sparite   Which is post-depostional   Mark diagrams as text
		1
		Max
		1
		Total 11

Mark Scheme 2836 June 2006

Abbreviations,	$l$	$=$	alternative and acceptable answers for the marking point
annotations and			
conventions used in			
the Mark Scheme	$;$	$=$	separates marking points
	()	$=$	answers which are not worthy of credit
	$\overline{\text { ecf }}=$	words which are not essential to gain credit	
	(underlining) key words which must be used to gain credit		
	AW	error carried forward	
ora	$=$	alternative wording	
		or reverse argument	



## QWC

1 mark The candidate is able to communicate knowledge and ideas adequately, specialist terms are used appropriately and spelling, punctuation and grammar are generally accurate with few errors.

0 marks There are severe shortcomings in the organisation and presentation of the answer, leading to a failure to communicate knowledge and ideas. There are significant errors in the use of language, spelling, punctuation and grammar which makes the candidate's meaning uncertain.

Abbreviations,	$I$	$=$	alternative and acceptable answers for the marking point
annotations and			
conventions used in			
the Mark Scheme	NOT $=$	separates marking points	
	()	$=$	answers which are not worthy of credit
	eords which are not essential to gain credit		
	$\overline{\text { ecf }}=$	(underlining) key words which must be used to gain credit	
	AW	error carried forward	
	ora	alternative wording	
	$=$	or reverse argument	


Question	Expected Answers	Marks
2 (a) (i)	edge of granite allow 2 separate granites limestone / marble and shale E - W boundary spotted slate zone hornfels zone	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$
(ii)	edge of metamorphic rocks	1
(b) (i)	equigranular crystals/ granoblastic / totally recrystallised / granular texture / fractures unevenly / hard	1
(ii)	partial recrystallisation   growth of new minerals - biotite / organic material with iron	
(c) (i)	xenolith	1
(ii)	fragment of roof rock / country rock / overlying sediment falls in stoping   partially assimilated / not melted	any 2
(d) (i)	feldspar / orthoclase / plagioclase	


Abbreviations,	$!$	$=$	alternative and acceptable answers for the marking point
annotations and			
conventions used in			
the Mark Scheme	$;$	$=$	separates marking points
	()	$=$	answers which are not worthy of credit
	$\overline{\text { ecf }}=$	words which are not essential to gain credit	(underlining) key words which must be used to gain credit
	AW	error carried forward	
	AWa	alternative wording	
	$=$	or reverse argument	


| Question | Expected Answers | Marks |
| :--- | ---: | :--- | :--- |
| $\mathbf{2}$(d) (ii) <br> batholith forms by partial melting of the continental crust <br> forms at depth >10km / slow cooling <br> magma moves up by diapiric action / stoping / emplaced in crust any 2 $\mathbf{1 4}$ |  |  |


Abbreviations,	$!$	$=$	alternative and acceptable answers for the marking point
annotations and			
conventions used in			
the Mark Scheme	$;$	$=$	separates marking points
	()	$=$	answers which are not worthy of credit
	$\overline{\text { ecf }}=$	words which are not essential to gain credit	
	(underlining) key words which must be used to gain credit		
	AW $=$   arror carried forward		
	ora	$=$	alternative wording
		or reverse argument	



Abbreviations,	$I$	$=$	alternative and acceptable answers for the marking point
annotations and			
conventions used in	$;$	$=$	separates marking points
the Mark Scheme	NOT	$=$	answers which are not worthy of credit
	()	$=$	words which are not essential to gain credit
	$\overline{\text { ecf }}=$	(underlining) key words which must be used to gain credit	
	AW $=$   error carried forward		
	ora	$=$	alternative wording


Question	Expected Answers	Marks
$\mathbf{4}$	sketch quality   recumbent fold   closed fold   fault   joints perpendicular to beds / mineral veins in joints in   sandstone / formed by pressure solution   amount / direction of displacement / correct dip   measurement of fault plane 40   thick competent beds / sandstone beds   shale bed / plastic/incompetent beds / bed thickness   varies generally thin   dip of limbs of fold top $35^{\circ}$ bottom $20^{\circ}$   axial plane of fold   forces described or labelled to show compression   diagram max 5   description max 5	

## QWC

1 mark The candidate is able to communicate knowledge and ideas adequately, specialist terms are used appropriately and spelling, punctuation and grammar are generally accurate with few errors.
0 marks There are severe shortcomings in the organisation and presentation of the answer, leading to a failure to communicate knowledge and ideas. There are significant errors in the use of language, spelling, punctuation and grammar which makes the candidate's meaning uncertain.

Quality of Written Communication

Abbreviations,	$I$	$=$	alternative and acceptable answers for the marking point
annotations and			
conventions used in			
the Mark Scheme	$;$	$=$	separates marking points
	()	$=$	answers which are not worthy of credit
	$\overline{\text { ecf }}=$	words which are not essential to gain credit	
	(underlining) key words which must be used to gain credit		
	AW	error carried forward	
	ora	alternative wording	
	$=$	or reverse argument	



## Unit Threshold Marks

Unit		Maximum   Mark	$\mathbf{a}$	$\mathbf{b}$	$\mathbf{c}$	$\mathbf{d}$	$\mathbf{e}$	$\mathbf{u}$
$\mathbf{2 8 3 1}$	Raw	60	44	38	32	27	22	0
	UMS	90	72	63	54	45	36	0
$\mathbf{2 8 3 2}$	Raw	60	46	40	34	29	24	0
	UMS	90	72	63	54	45	36	0
$\mathbf{2 8 3 3}$	Raw	120	93	83	73	63	53	0
	UMS	120	96	84	72	60	48	0
$\mathbf{2 8 3 4}$	Raw	90	67	60	53	46	40	0
	UMS	90	72	63	54	45	36	0
$\mathbf{2 8 3 5}$	Raw	90	56	48	40	33	26	0
	UMS	90	72	63	54	45	36	0
$\mathbf{2 8 3 6}$	Raw	120	89	79	69	59	49	0
	UMS	120	96	84	72	60	48	0

## Specification Aggregation Results

Overall threshold marks in UMS (i.e. after conversion of raw marks to uniform marks)

	Maximum   Mark	A	B	C	D	E	U
$\mathbf{3 8 8 4}$	300	240	210	180	150	120	0
$\mathbf{7 8 8 4}$	600	480	420	360	300	240	0

The cumulative percentage of candidates awarded each grade was as follows:

	A	B	C	D	E	U	Total Number of   Candidates
$\mathbf{3 8 8 4}$	17.9	37.7	59.7	77.3	91.4	100.0	1223
$\mathbf{7 8 8 4}$	23.6	48.6	71.3	88.8	97.1	100.0	753

1976 candidates aggregated this series
For a description of how UMS marks are calculated see;
www.ocr.org.uk/OCR/WebSite/docroot/understand/ums.isp
Statistics are correct at the time of publication

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU

## OCR Information Bureau

(General Qualifications)
Telephone: 01223553998
Facsimile: 01223552627
Email: helpdesk@ocr.org.uk

## www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

