Paper 3 Human Options

UNIT 2 Environmental management

Recommended Prior Knowledge Not essential, but candidates who have studied IGCSE Geography, Natural Economy or a Science subject are likely to have some knowledge of the basics of energy and power supplies.

Context There will be some linkage to the material studied in the AS Physical Core, Unit 2.4, regarding the human impact on the environment: urban effects on climate, particularly pollution. In addition, AS Human Core, Unit 3.2 Urban trends and issues of urbanisation, may have looked at the difficulties of upgrading parts of urban areas, in terms of dealing with pollution, etc. This unit will take the topic further by looking at and evaluating the success of possible solutions to the problems.

Outline This section is divided into two discrete but inter-related sections: energy supplies and environmental degradation.

This unit will examine the patterns of supply and demand for different energy resources, and the factors that encourage or limit their development/exploitation. It will examine both renewable and non-renewable resources and the environmental impacts resulting from their exploitation. Case studies of the development of different energy sources will illustrate the issues raised. The distribution of power sources is geographically uneven, necessitating the formulation of energy strategies by local and national governments to ensure the best possible exploitation/procurement of their energy needs, with the least harmful impact on the physical environment. Exploitation of other natural resources may contribute to the economic wellbeing of an area, but may also produce undesirable environmental consequences. There is a need for the development of strategies to combat the effects of over-exploitation of natural resources in rural areas, and the effects of industrial and urban growth in urban areas. The solutions are not always successful. A key expansion of content in the revised syllabus is water resources and water quality (2.3).

Content	Objectives	Terminology	Suggested Teaching Activities	Online	Other resources
				Resources	
2.1 Sustainable energy supplies	To understand the differences between renewable and non- renewable energy resources	Sustainability Renewable energy Non-renewable energy Energy budget Fossil fuels Hydro-electric power (HEP) Solar energy Biofuels Tidal power Wind power Nuclear power Technology	Classification of resources: renewable and non-renewable. Facts and statistics for energy use can be taken from an atlas or from one of the references given here. Analysis of trends in use of energy should be a starting point e.g. energy demand and supply in a country in 2005 and 2020. It is important that there is detail about each of the sources of energy in this section. Questions may focus on a particular source of energy - requirements for production, location, contribution to energy budget, etc. Suggested case studies: USA - energy alternatives for the future Wind farms in Europe - a topical issue	Resources http://www.uic.c om.au/educatio n.htm This includes items on nuclear energy and the greenhouse effect. June 2004 Q. 11(a) June 2005 Q. 11 June 2005 Q. 11 June 2006 Q. 3(a) June 2007 Q. 3(a) November 2008 Q. 3 All these questions demand detailed	Nagle & Spencer (Diagrams) pp.118-119 Waugh chapter 18 pp.488- 501 Guinness and Nagle pp.63-66 Bowen & Pallister p.236 Waugh chapter 18 pp.492- 498 Geothermal Energy (Geo Factsheet 76 Sept 1999)

To understand why levels of supply and demand for energy resources vary at the national level This section is focussed on demand and supply and the relationships between them	Demand Supply Resource endowment Technology Energy gap Factors that influence energy policy e.g. level of development, capital, energy policy, environmental concerns, Kyoto targets, etc.	Maps and statistics can be studied to show that the main producers of energy are not necessarily the main consumers. Local case studies are encouraged and often highly effective.	June 2004 Q. 11(b) energy consumption in LEDCs	Bowen & Pallister pp.238- 241 Nagle (Development & Underdevelopment) pp.111- 114 Nagle & Spencer (Diagrams) p.115 (dated, but can be used for comparison purposes).
To examine trends in the patterns of energy consumption in LEDCs and MEDCs		A good starting point is Waugh 489-491 (graphs and data). Relate to changes in technology. Trends in consumption. Comparison of statistics for present demand/ supply and future demand/supply. e.g. for 2005 and 2020. Possible comparison of LEDCs and MEDCs. This could be picked up as part of the case study (2.2).		Guinness & Nagle pp.56- 62 Waugh pp.489-91

To understand environmental of energy prod transport and the local scale Note Impact of people (human impact) is not	impact duction, usage at e Pollution Degradation Conservation	All energy production has some environmental impact (including renewables). Fuel extraction and electricity production create industrial waste, transport may spill crude oil, etc. This can be demonstrated by use of case studies e.g. Exxon Valdez oil spill or the Trans-Alaska pipeline which has great effects on the natural environment. Nuclear energy has distinct actual and potential impacts locally which may impact wider areas e.g. Chernobyl.	http://www.iclei. org/EFACTS/GL BWFIG1.GIF (diagram) http://www.iclei. org/EFACTS/GL OBWARM.HTM (global warming) Other links on this site explore alternative energy sources and their effects. June 2006 Q. 3(a)(i) Fig. 2	Nagle (Development & Underdevelopment) p.111 Cook, Hordern et al. pp. 119-20 is very good.
To understand environmental of energy prod transport and the global sca	impact duction, usage at	Data of carbon dioxide emissions and levels of deforestation can be analysed, considering 'Carbon sinks', and a link made to Tropical environments, Physical Options Unit 1. Could compare burning fossil fuels with nuclear energy, which may be seen as "clean" but has other possible dangers.	http://www.uic.c om.au/educatio n.htm deals with Australian uranium	Cook, Hordern et al. p.125, p.129 Waugh p.495

2.2 The management of energy supply	To examine and evaluate the supply of electrical energy in one country at two scales 1. Overall energy strategy (national) 2. Named, located energy scheme (local)	Demand Supply Energy gap Production Location	One case study is sufficient as long as it covers both scales, e.g. of Zimbabwe and Kariba (HEP). Teachers may develop more than one case study, e.g. the home country and a contrast (LEDC or MEDC). It is anticipated that the scheme studied will be from the same country as the strategy, to offer greater detail and depth.	June 2007 Q. 3(b) Nov 2006 Q. 3(b) Nov 2005 Q. 11(b)	Nagle (Development & Underdevelopment) pp.111-114 Geo Factsheet 95 April 2000 UK Energy – Update
2.3 Environmental degradation	To understand the nature and causes of the many types of pollution To distinguish pollution from environmental degradation	Environmental degradation Land pollution Air pollution Water pollution May also include: Noise pollution Visual Pollution	Industries in all four sectors can pollute land, air and water. Definition. Classification. Causes and sources of pollution as an introduction. Can use spider diagram to brainstorm the topic. Add water as a resource to the discussion. Could link to AS Unit 1 Hydrology through water quality, abstraction, etc. Could Physical Options, Unit 4 Arid and semi-arid environments. Past questions can indicate emphasis that should be made when interpreting the syllabus.	Nov 2008 Q. 4(b) water pollution June 2008 Q. 4 June 2007 Q. 4 Fig. 2 shows water supply - a useful teaching resource. Nov 2006 Q. 4 pollution June 2004 Q. 12(b) involves evaluation of factors such as finance in the upgrading of the environment.	Cook, Hordern et al. pp.114-123
	To analyse the factors which have led to degradation of rural environments. Causes and consequences of misuse or overuse of rural land	Population pressure Soil erosion Land degradation Deforestation Desertification Poor farming practices	Degradation of rural environments occurs in both MEDCs and LEDCs. Suggested case study from home country or any context which students can readily understand.		Nagle (Development & Underdevelopment) pp.66- 67 Hart et al. pp.133-136

To examine and	Reclamation	Case study – Basilicata, Italy, is		Hill (Advanced Geography
evaluate policies	Land reform	a very good, up-to-date case		Case Studies) pp.54-60
designed to improve	Soil conservation	study to use.		0230 0100103) pp.04 00
the quality of	Afforestation	study to use.		
degraded rural	Environmentally			
environments	Sensitive Areas			
environments	(ESAs)			
 To use do not one doubur	Waste disposal	Opposite the Astronomic International States	Nov 0005 0 40	
To understand why	Urbanisation	Case study 1: The problems of	Nov 2005 Q. 12	Hill pp.89-95
selected urban	Urban decay	the city of Rome, Italy	(a) urban	
environments have	Zones of discard		degradation	
become degraded	and assimilation	Case study 2: Cairo, Egypt:		Hill pp.96-105
	Inner city	Africa's largest city		
Note Teachers may	Informal settlement			
want to compare one	Waste management	Case study 3: American cities		Guinness & Nagle pp.70-
MEDC and one LEDC	- solid, liquid, gas and	Case study 4: The quality of life		74
city but this is not	particulates	in cities		Guinness & Nagle pp.89-
necessary.				94 on American cities
				Guinness & Nagle pp.95-
				105
To understand the	Urban regeneration	Case study 5: urban	http://www.foei.	Nagle & Spencer
relative success or	Urban redevelopment	redevelopment in Glasgow, UK	Org/media/index	(Diagrams) p.94, an older
failure of policies			<u>.html</u>	project but still useful
designed to address		Case study 6: inner city areas		Cook, Hordern et a. pp.92-
urban environmental		Case study 7: São Paulo, Brazil		94
degradation				Guinness & Nagle pp.109-
Ũ				113, pp.114-119
		Case study 8: London		Waugh pp.402-3, p. 408
		Docklands		
				Geo Factsheet 121
		There may be links to AS Unit		January 2002 Urban
		3.4 The management of urban		Problems in Rio de
		settlements		Janeiro
		Case studies are a matter of		
		individual choice.		

	Knowledge of risk factors affecting environments, environmental protection policies and their impact	Examples are diverse and may include: National Parks Nature reserves Mining agreements Tropical rainforest (TRF) Ecotourism Earth summits Kyoto protocol CO ₂ emissions targets	Identifying risk factors : general risk factors e.g. population pressure and specific risk factors (to time and/or place) e.g. road building project. Awareness of the need for some form of environmental protection. Measures : proposed or taken. Outcomes : relative success/failure. Unexpected effects, further needs, etc. Study of the Earth summits of Rio de Janeiro 1996 and Kyoto 1997 and the targets of the Kyoto Protocol. Possible link back to AS Unit 2 Atmosphere and weather, 2.4 The human impact		
2.4 The management of a degraded environment	To acquire detailed knowledge of one degraded environment Factors, causes, problems, issues, management strategy, attempts or initiatives, and relative success or failure are the key elements	Factors that cause and influence degradation: economic, social, environmental, political. Positive and negative.	This section may be covered by reference to any case study of a teacher's or student's choice. Note Be careful to ensure that the chosen case study has all the attributes needed. It is advisable to check the wording of past questions in order to select a case study that fulfils the question requirements.	Nov 2006 Q. 4(b) government as a factor June 2005 Q. 12(b)	Geo Factsheet 91 April 2000 Cardiff Bay Redevelopment, UK