Paper 1 Physical Core

UNIT 1 Hydrology and fluvial geomorphology

Recommended Prior Knowledge Students require little prior knowledge for this unit. They may have some foundation from earlier studies, such as IGCSE. However it is recommended that the key concept of the hydrological cycle is introduced in the first or second lesson.

Context Although this is a discrete unit, close links exist with all the units that follow, as water is a vital resource without which none of the other physical units could operate. Processes introduced here, such as evaporation and condensation, are fundamental to the whole of physical geography and to some human geography topics.

Outline The unit covers the functioning of the hydrological, fluvial and human aspects of drainage basins.

Content	Objectives	Terminology	Teaching Strategies (TS) and Activities (A)	Resources
	 Understanding of hydrology 	Hydrology Hydrological cycle	 TS To introduce the idea of a system by analogy. Open systems e.g. car, computer, domestic water supply. 	Waugh p.45
	 Knowledge of the global hydrological cycle 	System Open system Closed system	 Closed systems e.g. central heating, air conditioning. 	
			 The global hydrological cycle - why a closed system? 	Hart OCR text pp.1-2 fig.1.4 Ross et al. p.221 fig. 7.1
	 Understand the distinction between open and closed systems 	Components: flows/stores/ inputs/outputs	 A Flow diagram Fig. 1 Boxes for stores, arrows for flows. Could be completely blank or partially filled in. Same diagram on OHP or board to be filled in by teacher as discussion with class proceeds and they complete their diagrams. Written definition of global hydrological cycle comprising three ideas Closed 2. Water 3. Scale. May or may not contain volumes of water involved. Useful to suggest climatic variation in volumes of water. 	Bowen and Pallister p.6 Fig.1 Guinness and Nagle p.1 Fig.1 Prosser, Raw and Bishop p.41 Fig. 1 The Global Hydrological Cycle See Prosser, p.41 Waugh, p.58 fig. 3.1 excellent flow diagram.

Recent recommended text Hordern B; Rivers and Coasts; 2006 Philip Allan Updates

infiltration excess flow infiltration excess flow on flows and stores are popular in both Sections A

1.2 Rainfall - discharge relationships within drainage basins	 Understand how a drainage basin responds to a given input of rainfall Ability to draw a hydrograph (labelled well) Understand the storm (flood) hydrograph 	Storm hydrograph Lag time Rising limb Falling limb Peak Baseflow	 TS and A Begin with a theoretical diagram of the storm hydrograph. Label fully including the axes. Give some data and a graph can be constructed. A This could be reinforced by a "living graph" exercise – give students a basic outline of a hydrograph with a series of explanatory captions which need to be inserted/attached around the diagram. This can be very effective way of promoting discussion of the relative influence of different processes as well as a possible revision exercise. This could then be developed to look at the effects of different factors. A range of different hydrographs could then be shown as a springboard to discussion about the factors which influence the nature of hydrographs. 	Hordern pp. 5-9 Good introduction to the factors that influence hydrographs.
	 Understanding of factors Knowledge of a range of factors Understanding the inter-relationships between the factors Knowledge and understanding of land use changes and their effects on inputs, outputs stores, flows in the drainage basin and hydrographs 	separation line Flashy hydrograph Attenuated peak Land use Rainfall duration and intensity Drainage density Porosity Permeability Aquifer Wilting point Field capacity	 Drainage basin characteristics: size, shape, drainage density, soil moisture, rock type, slope, vegetation, land use. It is worth emphasising that shape is a factor when area is the same. Attenuated response in elongated basins whereas flashy in round ones. Case studies could be effective in illustrating these general principles. Suggested Extension Study: Detailed drainage basin morphometry in terms of bifurcation ratios, etc. (This is not essential as it is not specified in the syllabus.) 	Prosser p.48 Ross et al p.229 Fig. 3 Bowen and Pallister p. 14 Waugh p.61 Nagle pp. 62-3 Fig.3. Storm hydrograph

	TS Introduce the idea of permeability : ability to transmit water and porosity : volume of pore space. The two are linked via the connectivity of the pore space. If the pores are interconnected then the rock/soil may be porous and permeable e.g. sandstone. If the pores are tightly packed water holding is possible but transmission is very slow e.g. clay. Optional - Introduce idea of a pervious rock which is one which is permeable via joints and bedding planes.	Prosser p. 49 has a good detailed table of factors Ross, p.230, example p.231 Hart p.24 has a summary table Waugh p.62 Waugh pp.65-6 Ross pp.236-7 Nagle pp.83-86
Appreciate annual hydrographs/river	 Clays are porous but not permeable, sandstones are porous and permeable, chalk is not as porous as clay and is permeable, limestone is pervious, but not porous. Analogies can be used like sponges - real and synthetic and sieves. Links to water tables, aeration zone and saturation zone. Study a range of annual hydrographs/river regimes to appreciate the impact of climatic variations on discharge, e.g. comparison of Mediterranean, arid, cool temperate, alpine 	Waugh p.63 Hart p.14 Prosser p.46
regimes	The important aspect here is how these factors and combination of factors influence the nature of the response of the river. Therefore they should be studied together with a selection of hydrographs. Develop ideas of how changes in these factors cause different responses and changes to the volumes and nature of the flows. Human activities are a significant factor in	

	 influencing hydrographs. It may be useful to include human activities in this section as well in terms of river basin management (1.4). Equally, human activities could be considered in that section only, e.g. land use changes such as deforestation, afforestation, pasture to arable farming or vice versa, dam and reservoir building, urbanisation - concrete surfaces are impermeable hence their inability to transmit water therefore increased surface runoff. Make sure students can develop a full explanation, rather than assuming that it can be assumed that concrete is impermeable. Water abstraction and water quality should be consideration either as part of a relevant case study or in general terms. Depending on the river basin chosen, political factors may be relevant where the river crosses international boundaries. Waugh p.72 For data on UK drainage basins, try the National Water Archive at www.nwl.ac.uk/ih/nrfa/river_flow data Also hydrology web on http://etd.pnl.gov.2080/hydrow eb.html For rivers and dams, try www.im.org/basics/ard
1.3 River channel processes and landforms The channel as a system	TS In discussion with the group, the basic ideas and concepts can be introduced.Ross et al. pp.241-3 This is a good source with practical exercises on hydraulic radius and channel efficiency• Revise the concept of a system - inputs outputs, flows, discharge. Idea of moving water because of gradient, therefore energy to carry out work.Ross et al. pp.241-3 This is a good source with practical exercises on hydraulic radius and channel efficiency

Dynamic equilibrium • Knowledge and understanding of channel variables • Relationships between the variables	Gradient of channel bed Load - capacity and competence Discharge Velocity	 Ask what the work would be in a channel. Introduce idea of dynamic equilibrium with respect to a river channel, i.e. adjustment of channel bed to transport its load. Suggest that there would be a changing dynamic downstream as a result of a number of aspects of the channel which vary, i.e. variables. What are they and how may they change downstream? Discharge. Define and use as a springboard for discussion of cross sectional area which links directly to hydraulic radius via wetted perimeter. Look at two or three comparative diagrams of cross sectional area. 	Hordern part 3 pp.21-30
	Channel efficiency Channel roughness Capacity Competence	 Introduce idea of how variable discharge can influence channel efficiency by changing the level of water in the channel. (This idea will be picked up again in relation to landforms like braided channels). The other variables can be discussed once this has been understood, to form the foundations of the succeeding sections on process and form Channel roughness Gradient Velocity Competence Capacity Friction/flow characteristics A To reinforce all these ideas fieldwork or use of a sand tank would be ideal. However if this is not	Nagle p.103

		possible then discussion of measurement in the field in theory can aid understanding, e.g. difficulty of measuring discharge in low / high flow	
	Flows - laminar, turbulent, helicoidal	conditions. Use of orange peel and cork versus flow meters in terms of accuracy and practicality.	
Fluvial processes	Abrasion/corrasion	At the outset emphasise that these processes are influenced by the dynamics of the channel, interrelate and produce landforms which will be the next section of the work. Result from the energy possessed by the river. For processes of erosion, most authorities consider that abrasion and corrasion result from the action of the transported load. The load is the tool for erosion. Closest analogy 'like sandpaper'. Assists in undercutting and bank caving. More especially linked to turbulent flow and potholes in river bed. Hydraulic action sheer power of water. Cavitation is the	Erosion Nagle p.87 Prosser p.54 Ross p.240. Good exercises pp.242-244 Bowen and Pallister p.19 Waugh pp.72-3 Contains a good case study of the Afon Glaslyn, Wales, UK. There is a video to go with it.
Knowledge and Understanding of processes of erosion	Corrosion/solution Hydraulic action as erosion and	implosion of gas bubbles in turbulent flow causing shock waves and weakening the banks of the channel in particular. Both processes	
transportation and deposition	transportation Traction	lead to bank caving.	Bowen and Pallister p.20
Direction of erosion	Suspension Saltation Entrainment Critical erosion and deposition velocity Bed load Solute load	Vertical, headward and lateral erosion should be covered, either here, or in connection with landform development. Processes of transportation can be done easily by means of one diagram, which shows traction/bed load, saltation, suspension and solution.	Nagle pp.88-91 Bowen and Pallister p.21 Prosser p.55 Ross p.240 Fig. 5 Hjulstrom curve Waugh p.72 Bowen and Pallister p.21 Ross p.241
Hjulstrom curve - link between process and load		TS Hjulstrom curve Fig. 5 Begin with a diagram of the graph. Emphasise what it demonstrates via the axes of the graph. Explanation can be done by	Nagle p.95, good whole page spread

The nature of channels Link between process and form • Straight • Meandering • Braided		 annotating the graph, highlighting critical erosion and deposition velocities in relation to fraction of the load. Reasons why clay needs such a high velocity when they are such small particles. Distinguish between entrainment and settling location of these curves on the graph. Entrainment (ability of the river to transport material) is the velocity line between erosion and transportation and the settling velocity marks the division between transportation and deposition TS Use survey maps of Zimbabwe (Victoria Falls) (June 2004) and Port Antonio (Nov 2007) and June 2006 Q. 1 as teaching tools. Very useful. For meandering channels and floodplain characteristics. Discussion can focus on the contrasts and reasons for the contrasts. Conditions under which each occur, e.g. braided channels found in areas of variable discharge and large loads, whereas gradient variation causes meandering channels 	June 2006 Q. 1 Fig. 1 is an aerial view of a flood plain. Prosser p.62 Nagle p.93 very good on meandering channels Ross p.248 'The Great Meander Debate' contains useful graph correlating bankfull discharge and channel slope and plots meandering and braided channels. This has been used as stimulus material in examination questions. Geofile 529 Sept 2006 River channels fieldwork
	Floodplain Braided channel Eyot Meander Pool Riffle Flows - laminar, turbulent, helicoidal		Waugh pp.75-80 Bowen and Pallister pp.23- 31 Ross pp.245-252 Prosser pp.58-65 Good floodplain diagrams Ross p.257 and Prosser p.64

	Landforms Classification according to processes of formation Erosional forms - waterfalls, gorges Meander characteristics Depositional - point bars, floodplains, levées, alluvial fans, deltas	River cliff Slip-off slope Point bar Waterfall Plunge pool Rapids Gorge Bluff Floodplain Levée Cut-off/ox-bow lake Alluvial fan Delta	Description, explanation and an example or examples of these landforms is needed. Annotated diagrams can be a useful way of condensing the material. The floodplain with its assemblage of features can be considered as a section of work. This could be a way of creating the link between the geomorphology and the human impact on the physical environment, i.e. the final section of work in this unit.	Geofile 563 Jan 2008 Deltas Hordern part 4 pp.30-45
1.4 The human impact	Floods • Knowledge of causes of river flooding. (The unit is about fluvial processes so examination questions refer to river flooding as opposed to flooding by the sea.)			Nagle pp.100-1 Causes of floods Guinness and Nagle p.18 Bowen and Pallister p.32 Ross p.259 Flood prediction Hart pp.29-30 <u>www.pbs.org/wgbh/nova/flood/</u> <u>deluge</u> .html
	 Understanding of effects. Floods as a hazard Prediction Prevention Amelioration Management 	Bankfull discharge Overbankfull discharge Recurrence interval	Flood risk, prediction in terms of measurement like recurrence intervals. (Prediction is often given insufficient attention and it may be examined in its own right). Factors such as global warming and climate change could be covered as factors influencing	Prosser pp.68-73 Good on soft engineering p.71 Management - Guinness and

	prediction and management.	Nagle AS concepts Several
	Inadvertent changes versus management	
	strategies, which are part of possible	case studies. pp.18-34 Also found in AL Concepts and
Hard engineering	amelioration, could be considered.	cases pp.249-292
Soft engineering		Mississippi and Yangtze.
		(Internet sites will provide up-
Management	TS A case study would be the obvious way. River	to-date material on the Three
strategies - wing	basin management and river channel management.	Gorges Dam scheme)
dykes, levées, etc.	There are many well-documented examples other	
	than the Mississippi. The use of local examples is	Ross distinguishes between
	encouraged.	channel and basin
		management pp.253-268.
	Hard and soft engineering techniques.	Hordern Part 5 pp.46-56
	General principles of physical geography could	
	be the starting point for instance, increasing	
	channel capacity, decreasing discharge and	Bowen and Pallister Case
	then how the engineering schemes can achieve	Studies in LEDCs and MEDCs
	these objectives rather than just a catalogue of	Severn, UK and Bangladesh
	measures. Perhaps the catalogue can be the	1998 4 further case studies
	starting point and students are asked what the	Waugh Mississippi very
	objective is and then a classification can be	detailed pp.87-90
	drawn up.	Yangtze pp.91-7
	Emphasise the impact of the human activities	Hart pp.31-2 Good on
	upon the physical environment rather than the	protection measures.
	human activities as ends in themselves, i.e.	
	hydrograph changes, modifications to channel	Nov 2006 Q. 6(c) Flood plain
	and impact on discharges which then result in	development – risk
	floods. The case study could include	assessment.
	consideration of human use of, and impact on,	June 2006 Q. 6(c)
	flood plains.	
	'	
	Note Make sure there is an emphasis in the	
	presentation on channel flow, i.e. volume and	
	velocity. Candidates are expected to be able to	
	distinguish between flooding and channel flow	
	and appreciate what flooding is, i.e. over	
	bankfull discharge.	